2021届江苏省扬州市高三上学期数学1月适应性练习试题答案_第1页
2021届江苏省扬州市高三上学期数学1月适应性练习试题答案_第2页
2021届江苏省扬州市高三上学期数学1月适应性练习试题答案_第3页
2021届江苏省扬州市高三上学期数学1月适应性练习试题答案_第4页
2021届江苏省扬州市高三上学期数学1月适应性练习试题答案_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021届江苏省扬州市高三上学期数学1月适应性练习试题答案2021.11、B 2、C 3、A 4、C 5、D 6、B 7、A 8、D9、AB 10、AD 11、BCD 12、AC13、 14、 15、 16、 17、解:(1)在中,因为,所以由正弦定理得,因为,所以, 2分所以因为,所以, 4分因为,所以 5分(2)选:由正弦定理得,即,因为,所以,所以,所以是直角三角形,所以. 10分选:由得,解得因为,所以,所以,所以是直角三角形,所以. 10分选:因为,所以, 因为,所以,又,所以为正三角形,所以 10分18、解:(1)因为 ,所以,两式相减得, 2分因为,所以令,则可得 所以又,所以(

2、)所以,(), 5分所以数列是首项为、公比为的等比数列,所以 6分 注:结果对,但没有说明的扣2分(2)因为,所以 7 分所以 9分所以 12分19、(1)证明:四边形为长方形,平面 3分 . 同理,又,平面. 5分(2)以为坐标原点,所在直线分别为轴,建立如图所示空间直角坐标系 6分则设为平面的法向量, ,令,则, 平面的一个法向量. 8分同理可求得平面的一个法向量, 10分. 二面角的大小为钝角二面角的余弦值为. 12分注:错将二面角的余弦值写成的扣1分20、解:(1)随机变量的可能取值为, 3分所以 5分(2) 7分又,所以 9分 所以或, 所以, 所以 11分 12分21、解:(1)由

3、题意得, .2分解得,所以椭圆的方程为. .4分 (2)方法1:若直线的斜率不存在,则直线方程为,此时可得,所以. .5分若直线的斜率存在,设直线的方程为,代入整理得,易得恒成立.设, 则, 7分由直线的方程可得点,由直线的方程可得点,所以 .8分所以 .9分综上,为定值. .12分方法2:显然直线的斜率不为0,设直线的方程为,代入整理得,易得恒成立. 设,则, 7分由直线的方程可得点,由直线的方程可得点,所以 .8分所以 .9分 .12分22、解:(1)若,则,设切点,则,即 .2分令,观察得, .4分 又,所以在上递增,所以方程的根仅有,所以 .5分注:观察出是的根但没有交待唯一性的扣1分 (2)方法1:(直接研究差函数的最小值)令,则,令,则在上递增,且,所以存在唯一,使得,所以 当时,故函数单调递减当时,故函数单调递增所以 .7分 .9分由恒成立得,即,令,则,所以在上递减由得的解为,所以, .11分令,则在上递增,所以,所以 .12分 方法2:(构建同构式处理不等式) 由得,即,两边同时加得令,则, .9分 为单调增函数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论