下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、等比数列的概念教案 教学目标 1理解等比数列的定义,并能以方程思想作指导,理解和运用它的通项 公式2逐步体会类比、归纳的思想,进一步培养学生概括、抽象思维等能力3 培养学生严密的思维习惯,促进个性品质的良好发展教学重点和难点 重点:等比数列要领的形成及通项公式的应用 难点:对要领的深刻理解教学过程设计(一 )引入新课师:前面我们已经研究了一类特殊的数列 一 差数列,今天我们一起研 究第二类新的数列一比数列.(板书)三等比数列(二)讲解新课 师:等比数列与等差数列在名字上非常类似,只有一字之差,一个是差,一个是比, 你能否仿照等差数列, 举列说明你对等比数列的理解 (要求学生能主动的用类比思想,
2、通过具体例子说明对概念的理解)生:数列 1, 3, 9, 27, 师:你为什么认为它是等比数列呢? 生:因为这个数列相邻两项的比都是相等的,所以是等比数列 (先引导学生用自己的语言描述等比数列的特征,但暂时不作评论,以防 限制其他学生的思维 ) 师:这是你对等比数列的理解,不过这个例子中的项是一项比一项大, 能否再举一个一项比一项小的师:你对等比数列的理解呢? 生:数列中每一项与前一项的比都是同一个常数 师:他们对等比数列理解基本相同的,能否再换个样子,举一个例子 (若理解没有什么变化,就不必让学生再重复了 ) 师:下面再举例子又增加点要求,既然要去研究它,说明它一定有实际 应用价值,那么能否
3、再举一个生活中的等比数列例子 生:如生物学中细胞分裂问题: 1 个细胞经过一次分裂变为 2 个细胞, 这两个细胞再继续分裂成为 4 个细胞这样分裂继续下去,细胞个数从 1 到2 到 4 到 8,把每次分裂后所得细胞个数排列好可形成一个数列 1, 2, 4, 8,16, 这个数列就是等比数列 师:这个例子举得很好,不仅能够发现生活中的数学问题,还能把数学 知识应用在其它学科,其实等比数列的应用是非常广泛的,说明它确有 很高的研究价值说了这么多,也发现了等比数列的特征,能否试着给等比数列下个定义 呢? 生:如果一个数列的每一项与前一项的比都等于一个常数,那么这个数 列就叫做等比数列师:作为定义这种
4、叙述还有一点不足,为保证这样比都作得出来,这每 一项应从数列的第二项起, 否则第一项没有前一项, 也就做不出这个比, 调整之后,再找一位同学准确描述一下等比数列生:如果一个数列,从第二项起每一项与前一项的比都等于一个常数, 那么这个数列叫做等比数列师:好,就把它作为等比数列的定义记录下来(板书)1定义如果一个数列,从第二项起,每一项与前一项的比都是同 一个常数,那么这个数列叫做等比数列,这个常数叫做公比,记作q (教师在叙述的同时,再强调为突出所做出的比都相等,应写为同一个常 数更准确 )师:记住这句话并不难,关键是如何理解它,并利用它解决问题,先回 到刚才几个例子看它们是否是等比数列,如果是
5、,公比是多少? 师:好,公比会找了,再来看这样一件事,等比数列从定义上与等差数 列有很多密切关系使我们想到,有没有这样的数列,它既是等差数列也 是等比数列呢?生:有,如数列 1, 1, 1 , 1,是一个以 0 为公差的等差数列,也是以1 为公比的等比数列 师:除了这个数列以外,还能再举一个吗? 师:他们举的例子都是对的,而且从例子中数列的特征,使我们联想到, 形如 a, a, a, (aR)的数列好像都满足既是等差又是等比数列,是这 样吗?(可让学生作短暂的讨论,再找学生回答 )生:形如 a, a, a, 这样的数列一定是等差数列 (这一点可以由等差数 列的定义加以证明 )但它未必是等比数列
6、师:能具体解释一下吗?生:当 a=0 时,数列每一项均为零,都不能作比,因此不是等比数列,a 旳 时,此数列是等比数列师:这个回答非常准确,通过对这个问题的研究,对于我们进一步认识 等比数列有什么帮助吗?从中得到什么启示吗?生:等比数列中的每一项都不能为零,因为在定义中,数列中每一项都 要做分母,所以均不能为零师:这一点实际上是隐含在定义的叙述之中的,从另一个角度上讲,数 列各项均不为零是这个数列成等比数列的什么条件呢? 生:是必要非充分条件师:这是我们对等比数列进一步理解得到第一点共识 (板书)2对定义的理解(1) an0是数列 an成等比数列的必要非充分条件. 师:这一点是对等比数列的项的
7、特殊要求,这与等差数列也是不同的 下面从另外一个角度研究一下定义,数学定义一般都是用文字语言叙述 表达的,但是在使用时往往需要符号化,因此下面试用数学符号语言来 描述它?师:这种描述过于具体, 能否用简单的一个式子来概括这么多个比的等 师:由于 n 可取任意自然数,故 an+1可表示数列中每一项,an可表示相 应的前一项,因此这一个比可以代表无数多个比的相等,所以这个式子 与定义是等价的 师:这个比式也可作为我们判断一个数列 an 是否是等比数列的依据 这 样我们就完成了对等比数列的定义的研究、回顾一下研究过程主要做 了这样两件事:一是利用类比方法得到了等比数列的定义;二是用抽象 概括将定义翻
8、译为符号语言,并能利用它证明一个数列是否是等比数列下面要进一步研究等比数列,必须先搞清怎么表示一个等比数列,要表 示数列,需先确定这个数列,确定一个等比数列几个条件呢? 生:两个条件师:哪两个条件? 生:可以是首项和公比 师:如果等比数列 an,首项为 ai,公比为 q,你会用什么方法来表示 这个等比数列呢?生:可以表示为ai,a2,a3,色这是常用的列举法 师:刚才举例时用的就是这种表示方法, 除此之外, 还有其它表示法吗? 师:这两种表示法各有所长,但使用最方便的还是通项公式法即如果 已知an是等比数列,首项是 ai,公比是 q,如何用 n 的解析式表示数列 中的第 n 项呢?(板书)3等
9、比数列的通项公式已知等比数列 an,首项为 ai,公比为 q,则 a= ?生:an=aiqn-i(n N+). 师:你是怎么得到的生: 根据已知条件, 数列可以写成 ai, aiq, aiq2, aiq3, 从而发现规律, 归纳出第 n 次 an=aiqn-i.师:归纳的结论是正确的,且用的方法,调动的知识都非常好,寻找通 项即寻找项的一般规律, 先看特殊项, 写出几项, 再归纳出一般结论. 这 种方法是不完全归纳法, 因此这个结论的正确性是需要证明的 (请同学们 课下完成 ).(板书)an=aiqn-i(n N+).(2) 对公式的认识与理解 师: 对于这个通项公式,可以从几个方面去认识它呢
10、?(这不是第一次遇到这类公式,学生应知道从什么角度去认识公式)生:可以从函数观点去认识,把通项公式看作关于 n 的解析式. 师:与什么函数的解析式相类似.生:指数函数. 师:它类似于指数函数解析式,说明它在某些方面可能与指数函数有联 系.生:还可以把它看作一个方程,用方程思想来求解其中的量. 师:方程中有四个量,知三求一是最简单的公式应用,不过当已知ai, q和 an,求 n 时,此时的方程是个指数方程,求解时需多加注意.如 an 是等比数列,首项是 2,公比是 2,那么 256 是数列中第几项? 生:因为 an=aiqn-i,则 an=22n-i=2n.又 an=256,得 256=2n.解
11、得 n=8. 师:其它的例子不再举了.但如果只知二,那么就能求二,但求二恐怕 一个方程就不能解决了,需要方程组才能解决.这也就是通项公式的不 同层次的应用了,下面一起看这样一个题目(板书)例 1 一个等比数列的第二项是 2,第三项与第四项的和是 12,求它 的第八项的值师:拿到这个题目,你打算怎样设计你的求解方案,或者说对这个题目 有什么想法生:想求出首项和公比 师:为什么要求出它们呢? 生:有了首项和公比,就有了通项公式,就可以求出数列中任何一项 师:好,这就是计算中要抓基本量的思想首项和公比就是等比数列的 两个基本量下面我们具体开始解,大家共同完成这个题目的求解 师:怎么解这个方程组呢?生
12、:笛得 q + q2=6.解得 q= 3 或 q=2. 师:最后结果是正确的,但在具体求解过程中还有值得改进的地方此题要求的是 a8,即 a1q7=a1q q6=2q6.故只要把 q 求出即可求出 a8的值.这 样在解方程组时就不必求出 a1,从而使运算过程得以简化.(板书)解:设等比数列的首项为 ai,公比为 q.则由已知得吨得 q2+ q=6 .解得 q= 3 或 q=2 .贝 V a8=aiq7=aiq q6=2 q6=2 ( 3)6=1458 或 a8=2q6=2 26=27=128.故数列第八项是 1458 或 128.师:通过这个小题的计算,发现这类型题目主要是方程思想的应用.应
13、用过程中主要是三个基本步骤:设、列、求,通过刚才的实践,你们觉 得在这三步上应该注意什么呢?生:设未知数应注意设等比数列的基本量首项和公比.在解方程组时, 通常会用到乘除消元的方法.师:总结得不错,在注意以上几点的同时,还应注意利用分析综合法寻 求已知和所求之间的联系,以达到简化运算的目的.下面我们一起看例 2. (此题先让学生讲明思路,根据时间完成主要内容即可)师:这个题目应从哪里入手解决呢?生:应先判断这个数列是否是等比或等差数列. 师:为什么要做这件事呢?生:因为知道了是什么样的数列,就可以找出其通项公式,就可以判断 某个数是否是数列中的项.师:如果判断它是否是等差或等比数列呢? 师:好,这种思路是可行的,除此之外还有其他思路吗?生:可以利用 2an=3an+i(n N+)找到 2ai=3a2, 2a2=3a3,2a4=3a5,可以 找师:这种方法把一般关系具体化,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 04版电工工具租赁合同3篇
- 二零二四年餐饮加盟合同:加盟商培训与技术支持规定
- 2024年度电商合作标的为农产品直销平台的合同
- 二零二四年度常州住宅小区电动车充电设施建设合同
- 代理招标合同范本完整版
- 抵押房产证合同范本
- 二零二四年度车间设备更新与淘汰策略合同
- 二零二四年度建筑工程设计合同:关于某公司设计并施工办公楼项目
- 二零二四年租赁期限内的租赁合同3篇
- 二零二四年实验室厂房设计与施工合同
- 医院感染管理质量控制评价内容及考核标准(各临床科室)
- 乡村医生聘用合同书模板
- PI形式发票模板
- 闭合导线计算表(带公式)
- 九宫数独题目200题(附答案)
- JGJ-130-2011建筑施工扣件式钢管脚手架安全技术规范(新版)
- 关节痛的诊治思路PPT医学课件
- 《论语》名句英文选译
- 人教版高中英语单词表必修二
- 设计阶段监理细则
- 大学物理_电磁场
评论
0/150
提交评论