版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、湘教版八年级上册数学提纲 湘教版八年级上册数学提纲 (一)运用公式法 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a+b)(a-b) a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 平方差公式 (1)式子:a2-b2=(a+b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2.
2、因式分解,必须进行到每一个多项式因式不能再分解为止。 (四)完全平方公式 (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反过来,就可以得到: a2+2ab+b2=(a+b)2 a2-2ab+b2=(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 项数:三项 有两项是两个数的的平方和,这两项的符号相同。 有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因
3、式,再用公式分解。 (4)完全平方公式中的a、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式. 如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式. 原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以
4、原式=(am+an)+(bm+bn) =a(m+n)+b(m+n) =(m+n)×(a+b). 学好数学的关键就在于要适时适量地进行总结归类,接下来小编就为大家整理了这篇人教版八年级数学全等三角形知识点讲解,希望可以对大家有所帮助。 全等三角形的性质:全等三角形对应边相等、对应角相等。 全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。 角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等 角平分线推论:角的内部到角的两边的距离相等的点在叫的
5、平分线上。 证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的'边角关系),、回顾三角形判定,搞清我们还需要什么,、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题). 这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式. (六)提公因式法 1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项
6、的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式. 2.运用公式x2+(p+q)x+pq=(x+q)(x+p)进行因式分解要注意: 1)必须先将常数项分解成两个因数的积,且这两个因数的代数和等于 一次项的系数. 2)将常数项分解成满足要求的两个因数积的多次尝试,一般步骤: 列出常数项分解成两个因数的积各种可能情况; 尝试其中的哪两个因数的和恰好等于一次项系数. 3)将原多项式分解成(x+q)(x+p)的形式. (七)分式的乘除法 1.
7、把一个分式的分子与分母的公因式约去,叫做分式的约分. 2.分式进行约分的目的是要把这个分式化为最简分式. 3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分. 4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3. 5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方. 6.注意混合运算中应先算
8、括号,再算乘方,然后乘除,最后算加减. (八)分数的加减法 1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来. 2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变. 3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备. 4.通分的依据:分式的基本性质. 5.通分的关键:确定几个分式的公分母. 通常取各分母的所有因式的次幂的积作公分母,这样的公分母叫做最简公分母. 6.类比分数的通分得到分式的通分: 把几个异
9、分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。 同分母的分式加减运算,分母不变,把分子相加减,这就是把分式的运算转化为整式运算。 8.异分母的分式加减法法则:异分母的分式相加减,先通分,变为同分母的分式,然后再加减. 9.同分母分式相加减,分母不变,只须将分子作加减运算,但注意每个分子是个整体,要适时添上括号. 10.对于整式和分式之间的加减运算,则把整式看成一个整体,即看成是分母为1的分式,以便通分. 11.异分母分式的加减运算,首先观察每个公式是否最简分式,能约分的先约分,使分式简化,然后再通分
10、,这样可使运算简化. 12.作为最后结果,如果是分式则应该是最简分式. (九)含有字母系数的一元一次方程 含有字母系数的一元一次方程 引例:一数的a倍(a0)等于b,求这个数。用x表示这个数,根据题意,可得方程ax=b(a0) 在这个方程中,x是未知数,a和b是用字母表示的已知数。对x来说,字母a是x的系数,b是常数项。这个方程就是一个含有字母系数的一元一次方程。 含有字母系数的方程的解法与以前学过的只含有数字系数的方程的解法相同,但必须特别注意:用含有字母的式子去乘或除方程的两边,这个式子的值不能等于零。 如何提高初中数学成绩 数学基础知识的学习 想要把数学学好这记忆与理解的方法是必须要学会
11、的。理解是一门必要学习的法则,只有理解准确,不跑题再结合方法就一定能够解答。只要能很好的理解这个题目是怎样的结构,就可以很好的解出答案。在数学学习中,要把记忆和推理紧密结合起来,比如在三角函数一章中,所有的公式不外乎都是结合了一些三角函数的定义与加法定理为基础方面上,在记忆数学公式的同时,你可以结合一些例题进行推理,从而可以更快加速你对这公式的理解与记忆。 数学解题 学数学必须是要脚踏实地的,没有那么多投机取巧的办法,数学练习要讲究高质量的和对症下药的方法。对于例题,要养成先分析再做题的习惯,遇到不懂可以先做好标记,然后再多跟同学老师沟通交流。要尝试结合多种解题方式,要多练习。 错题集 针对做
12、错的题目,列举出该题目所有的解题方法(可以从答案,或者同学,老师那里请教),总有一种是你能掌握的。针对几套试卷讲解,即可有明显成效。一开始,看似每道题花很久才能了解所有解题方案,但是,成效是非常明显的。 作业 作业对于很多的学生来说都是不陌生的,一般老师在上完课之后都会布置一些作业,这样使上课所学的内容充分的运用出来,仅仅依靠上课听是不够的,还需要在下课之后进行练习来讲上课所学的知识巩固。 初中怎样学好数学 一、课前主动预习 首先初中数学一节课所学习的知识量比小学相比是多得多。再者很多小学阶段数学课所学习的内容,只要学生自己看看书完全都可以掌握,但初中阶段的数学就完全不同,知识内容多,知识点也
13、较为繁杂,所以需要学生们学会主动去预习,在课前的预习中,主动掌握知识点的脉络,画出你已经掌握的和有所疑惑的内容,在可让有的放矢的学习,有提前预习的脉络帮助你快速跟上老师讲课的节奏,其次在预习中所画出的未懂内容更能帮助你在课上着重理解和分析老师的思维和方法,这样才会让课堂变得高效,也让数学课的学习是有准备的进行,所以预习是学习初中数学的重要课前准备之一。 二、学会主动思考 笔者的很多学生反映过,他们在初中数学课堂上很多内容都能听懂,为什么课下拿到题目还是不会做。其实这个问题在笔者看来,是学生在课堂上听多思少的原因造成的,很多学生在课堂上只会一味的听老师所讲,从来不会主动去思考老师为什么会产生这样的思维方式,而恰恰数学就是培养学生的逻辑思维能力,一旦你只听不思,只会让知识的逻辑性关联性失去必要的思维痕迹,这就造成了你课下拿到题目还是无从下手。 三、善于总结规律 讲这一点,笔者先举一个很多初中学生在数学学习上都会犯的一个错误,很多同学是不是同一种类型的题目总是反复错,经常错?错题笔记我也做了,为什么这种类型题换一种形式,我又错了? 其实,这种问题的出现,就是学生缺乏总结规律的习惯,一种类型的题目
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 株洲市房屋买卖合同中的合同违约调解
- 清算后期服务协议
- 小红书:教你打造小红书蓝V专业号【互联网】【蓝V运营】
- 九年级化学上册 第六单元 碳和碳的化合物 课题1 金刚石、石墨、C60教案 (新版)新人教版
- 二年级体育上册 2.2出升的太阳教案
- 2024秋八年级英语下册 Module 1 Feelings and impressions Unit 3 Language in use教案含教学反思(新版)外研版
- 2024-2025学年学年高中英语 Module2 A job worth doing教案 外研版必修5
- 2024-2025学年高中英语下学期第18周教学设计
- 2024秋八年级英语上册 Unit 7 Will people have robots教案 (新版)人教新目标版
- 2023七年级地理上册 第一章 地球和地图 第四节 地形图的判读说课稿 (新版)新人教版
- 广州供电局输电部高压电缆运行工作介绍
- (完整版)电子科技大学微电子器件习题
- 实验室审核检查表参照模板
- 三年级上册语文课程纲要.doc
- 幼小衔接的主要内容
- 做新时代好队员竞选小队长演示PPT课件
- Linux网络管理
- 生命成长,责任担当——主题班会(共26张PPT)
- 混凝土结构连接化学螺栓锚栓计算表
- 兴趣小组活动
- 第五章预应力混凝土工程
评论
0/150
提交评论