版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-3-19高等数学二、高阶导数的运算法则二、高阶导数的运算法则第三节一、高阶导数的概念一、高阶导数的概念机动 目录 上页 下页 返回 结束 高阶导数 第二章 2022-3-19高等数学一、高阶导数的概念一、高阶导数的概念)(tss 速度即sv加速度,ddtsv tvadd)dd(ddtst即)( sa引例引例:变速直线运动机动 目录 上页 下页 返回 结束 2022-3-19高等数学定义定义.若函数)(xfy 的导数)(xfy可导,或,dd22xy即)( yy或)dd(dddd22xyxxy类似地 , 二阶导数的导数称为三阶导数 ,1n阶导数的导数称为 n 阶导数 ,y ,)4(y)(
2、,ny或,dd33xy,dd44xynnxydd,)(xf的二阶导数二阶导数 , 记作y )(xf 的导数为依次类推 ,分别记作则称机动 目录 上页 下页 返回 结束 2022-3-19高等数学设,2210nnxaxaxaay求.)(ny解解:1ayxa221nnxan 212ayxa3232) 1(nnxann依次类推 ,nnany!)(233xa例例1.思考思考: 设, )(为任意常数xy ?)(nynnxnx) 1()2)(1()()(问可得机动 目录 上页 下页 返回 结束 2022-3-19高等数学nx)1 ( ,3xaeay 例例2. 设求解解:特别有:解解:! ) 1( n规定
3、0 ! = 1思考思考:,xaey .)(ny,xaeay ,2xaeay xanneay)(xnxee)()(例例3. 设, )1(lnxy求.)(ny,11xy,)1 (12xy ,)1 (21) 1(32xy )(ny1) 1(n, )1(lnxy)(nyxy11 ynxn)1 (! ) 1(2)1 (1x,机动 目录 上页 下页 返回 结束 2022-3-19高等数学例例4. 设,sin xy 求.)(ny解解: xycos)sin(2x)cos(2 xy)sin(22x)2sin(2x)2cos(2 xy)3sin(2x一般地 ,xxnsin()(sin)(类似可证:xxncos()
4、(cos)()2n)2n机动 目录 上页 下页 返回 结束 2022-3-19高等数学例例5 . 设bxeyxasin解解:bxaeyxasin)cossin(xbbxbaexa求为常数 , ),(ba.)(nybxbexacos)cossin(222222xbbabxbbaabacossinxae)sin(22bxba)arctan(ab22bay )sin(bxaexa222)()(nnbayxaeba22)arctan(ab)2sin(22bxba)sin(nbxexa)cos(bxbexa机动 目录 上页 下页 返回 结束 2022-3-19高等数学例例6. 设,3)(23xxxxf求
5、使)0()(nf存在的最高分析分析: )(xf0 x,43x0 x,23xxxfx02lim)0(300 xxfx04lim)0(3000 x0 x)(xf,122x,62x )0(fxxx206lim0 )0(fxxx2012lim0 )(xf但是,12)0( f,24)0( f)0(f 不存在 ._n2又0 x,24x0 x,12x阶数机动 目录 上页 下页 返回 结束 2022-3-19高等数学二、高阶导数的运算法则二、高阶导数的运算法则都有 n 阶导数 , 则)()(. 1nvu )()(nnvu)()(. 2nuC)(nuC(C为常数)()(. 3nvuvun)(!2) 1( nn!
6、) 1() 1(kknnn vun)2()()(kknvu)(nvu莱布尼兹莱布尼兹(Leibniz) 公式公式)(xuu 及)(xvv 设函数vunn) 1(推导 目录 上页 下页 返回 结束 2022-3-19高等数学vu 3)(vuvuvu)( vu)(vuvuvuvu 2vu )( vuvu vu 3vu 用数学归纳法可证莱布尼兹公式莱布尼兹公式成立 .机动 目录 上页 下页 返回 结束 2022-3-19高等数学例例7. ,22xexy 求.)20(y解解: 设,22xveux则xkkeu2)(2,2xv ,2 v0)(kv代入莱布尼兹公式 , 得)20(yxe22022xxe219
7、220 x2!219202xe2202)9520(2xxxe2182)20,2,1(k)20,3(k机动 目录 上页 下页 返回 结束 2022-3-19高等数学0!2) 1() 1(nynn)(nyn例例8. 设,arctan xy 求).0()(ny解解:,112xy即1)1 (2yx用莱布尼兹公式求 n 阶导数)1 (2xx22令,0 x得)0() 1()0() 1() 1(nnynny),2, 1(n由,0)0(y得,0)0( y,0)0()4(y,)0() 12( my)0() 12(2) 12(mymm)0(! )2() 1(ymm0)0()2(my ) 1(ny12, ! )2(
8、) 1(2,0)0()(mnmmnymn即), 2, 1 , 0(m由, 1)0( y得)0(! )2() 1()0() 12(ymymm机动 目录 上页 下页 返回 结束 2022-3-19高等数学内容小结内容小结(1) 逐阶求导法(2) 利用归纳法(3) 间接法 利用已知的高阶导数公式(4) 利用莱布尼兹公式高阶导数的求法)(1nxa1)(!) 1(nnxan)(1nxa1)(!nxan如,机动 目录 上页 下页 返回 结束 2022-3-19高等数学思考与练习思考与练习xy1211)()1 (!) 1(2nnnxnyxxxy11123,)1 (!1)(nxnynn1. 如何求下列函数的
9、n 阶导数?xxy11) 1 (xxy1)2(3解解: 解解: 机动 目录 上页 下页 返回 结束 2022-3-19高等数学2312xxy1121xxy11)() 1(1)2(1!) 1(nnnnxxny(3)12) 1)(2(1xBxAxx提示提示: 令)2(xA原式2x) 1(xB原式1x11机动 目录 上页 下页 返回 结束 2022-3-19高等数学xxy66cossin)4(3232)(cos)(sinxxyxxxx4224coscossinsin222)cos(sinxx x2sin431283)(nyn433ba)(ba )(22babax4cos8385)4cos(2nx 2
10、2cos1sin2xx22cossin3解解:机动 目录 上页 下页 返回 结束 2022-3-19高等数学1)( !nxfn2. (填空题) (1) 设,cos)23()(1622xnxxxf则)2()(nf)(xf16cos) 1(2xxn)()(xfn16cos) 1(2xxn提示提示:各项均含因子 ( x 2 )nx)2( ! n22!n(2) 已知)(xf任意阶可导, 且2n时)()(xfn提示提示:,)()(2xfxf则当 )(xf)()(2xfxf3)( !2xf )(xf)()(3!22xfxf4)( !3xf机动 目录 上页 下页 返回 结束 2022-3-19高等数学3. 试从 yyx1dd导出.)(dd322yyyx 解:解:yxyyxdddddd22 y1xddyxdd2)(yy y13)(yy 同样可求33ddyx(见 P101 题4 ) 作业作业P101 1 (9) , (12) ; 3 ; 4 (2) ; 8 (2) , (3) ; 9 (2) , (3)第四节 目录 上页 下页 返回 结束 2022-3-19高等数学解解: 设)(sin2xfxy 求,y 其中 f 二阶可导. y yxxfxcos)(sin2)(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 门架式履带作业车液压行驶系统设计与试验
- 2025年北京电子科技职业学院高职单招高职单招英语2016-2024历年频考点试题含答案解析
- 2025年佛山职业技术学院高职单招数学历年(2016-2024)频考点试题含答案解析
- 2025年云南工程职业学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 鱼池生态循环系统构建-洞察分析
- 2025年云南交通运输职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 宇宙学中的黑洞-洞察分析
- 糖尿病足创面修复新技术-洞察分析
- 现代汉语语法发展趋势分析-洞察分析
- 隐私同态加密算法设计-洞察分析
- 无人化农场项目可行性研究报告
- 《如何存款最合算》课件
- 社区团支部工作计划
- 拖欠工程款上访信范文
- 《wifi协议文库》课件
- 中华人民共和国职业分类大典是(专业职业分类明细)
- 2025年新高考语文复习 文言文速读技巧 考情分析及备考策略
- 2024年海口市选调生考试(行政职业能力测验)综合能力测试题及答案1套
- 一年级下册数学口算题卡打印
- 2024年中科院心理咨询师新教材各单元考试题库大全-下(多选题部分)
- 真人cs基于信号发射的激光武器设计
评论
0/150
提交评论