




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、金融大数据实践研究连接连接降维降维新一代金融服务:需要?一把手工程一把手工程数据科学家数据科学家风险管理贷款服务商业票据系统投资理财系统中间业务三方存托管账户管理卡业务各类生活应用 (出行 购物 医疗服务)积分管理 流量管理打造互联网金融银行证券保险银之杰生态圈公司介绍大数据与互联网金融风险定价精准营销互联网资产交易平台互联网财富管理互联网保险征信超级支付大数据互联网金融业务板块互联网金融基础设施金融行业大数据建设方法论大数据平台的建设。首先应该规整、规范、统一和梳理行内已有数据。对已有的客户综合视图,产品视图和账户视图进行完整和统一的梳理;能够完全兼容并提高现有查询等。 这是基础。获取、丰富
2、数据; 整合外部数据;打通外部数据; 完成多层次、多维度的360度客户视图的完善和补充, 其中技术实现如模型和算法的提升、自动化和具备前瞻性。针对具体的、明确的新业务和新产品进行快速落地和创新实现。用互联网模式进行快速迭代,孵化出全新的业务应用。大数据就在你我身边衣食住行优衣库 线上线下打通 促进服务提升 店面选址APP应用舆情分析智能探头,肯特基 跟踪用户互动、店内客流和预定情况,大数据分析人员对于菜单变化和餐厅设计等的优化和预测是物流等整个闭环优化。 星巴克的选址和部分店面空间设计采用大数据分析大数据于我们就如水电一样在我们身边俱乐部式高档酒店大数据分析客户历史数据和酒店就餐和运动及活动数
3、据优质客户旅游线热线路0元出行, 10%本金出行。从搜索到交易达成、包括金融服务大数据在国际银行业的主要应用大数据在国内银行业的主要应用个人画像;企业画像批量获客跨界融合整合资源与产业升级反欺诈应用(申请欺诈;交易欺诈)小微企业贷款评估P2P平台快速(极速)放贷产品组合优化舆情分析服务升级(个性化、多样化服务)精准预测个性化推荐联合营销 从上一周的声量表现来看,南京银行声量略高于江苏银行。 从声量平台分布来看,南京银行在新闻、论坛和博客上产生的声量远高于江苏银行。舆情声量概览 一周总声量备注:数据周期为2015年7月20日-7月26日,南京银行总声量为2,733,江苏银行总声量为1,608。声
4、量平台分布南京银行热词云图热词云图 在新闻平台上,南京银行经常与平安银行、宁波银行和交通银行等共同提及,江苏银行提及量较为靠后。 股票和理财产品是最为热门的两个讨论话题。在新闻平台上,南京银行经常与平安银行、宁波银行、交通银行、兴业银行、华泰证券,江苏银行、中信银行和浦发银行共同提及。股票是时下的热议话题,在银行板块的股票中,南京银行的正面评价居多。理财产品也收到消费者热议,其收益率表现是普遍关注点。备注:数据周期为2015年7月20日-7月26日,南京银行总声量为2,733,江苏银行总声量为1,608。热词云图 江苏银行与招商银行、平安银行、民生银行等共同提及率较高。 其房贷首付六折政策在新
5、闻平台上传播较广。 消费者对信用卡和理财产品最为关注。江苏银行热词云图 备注:数据周期为2015年7月20日-7月26日,南京银行总声量为2,733,江苏银行总声量为1,608。江苏银行与招商银行、平安银行、民生银行、南京银行、汇丰银行、光大银行、交通银行、兴业银行和宁波银行等共同提及率较高。江苏银行实行房贷首付六折政策,相关新闻报道较多。信用卡和理财产品是消费者较为关注的话题。情感表现 由于声量来源以新闻为主,因此带有情感倾向的消费者讨论声量非常小。其中,南京银行的口碑优于负面口碑。 南京银行由于股票未跌停以及没有手续费收到好评,然后消费者也对其报表持不信任态度。 江苏银行的正面声量主要来源
6、于对其银行的崇拜和公益活动的称赞,负面声量较为含糊,未明确为指出原因。备注:数据周期为2015年7月20日-7月26日,南京银行总声量为2,733,江苏银行总声量为1,608。情感表现南京银行江苏银行正面94中立2,7231,598负面16声量情感表现负面声量举例不良率和业绩增速指标整体都不容乐观。此外南京银行的报表会美到我不敢相信。正面声量举例而我买的 南京银行 是银行里唯一涨得还是很欣慰的。.银行板块也普遍下跌,仅 南京银行 一只股票在涨。.只有少数银行没有手续费,目前好像有 南京银行 .例举负面声量举例江苏银行 是不是倒闭了啊,没有听到动静跑了好几站路,发现一家 江苏银行 ,结果不能办现
7、在坐车去浦发银行看看.正面声量举例今天很幸运见到了江苏银行的夏董事长,估计这辈子也就只能这一次了,其他的行长都没什么特别的,他一出场就有一股浩然正气的感觉为让这些马路天使能在这么酷热的天气中有个喝口水、歇歇脚的地方,锦帆路社区联系 江苏银行 沧浪支行在行里为环卫工人们设立了一处“清凉驿站”,给他们一个夏日小憩、清凉饮水之处。.传统客户视图-数据 +模型 =用户画像-立体 多维度 深层次 细颗粒度 对应的不同的业务和多样的应用场景-快速识别白名单和黑名单;提高自动核准率, 从而提升效率-精准营销;征信评级; 反欺诈; 动态调整级别和监控 (增收和降低坏账率)、快速放贷运营提升 和 服务提升 。-
8、这里需要刻画用户, 不同特征, 不同地区往往涉及到基本自然属性、兴趣爱好、购物行为和爱好。 用户画像vs 打标签 (标签的组合,标签 派生特征, 标签关联关系)大数据客户画像银行的数据 + 外部数据1. 银行在使用的数据“银行内部可用信息的使用率仅仅是1/3, 仍然有大片数据荒地, 价值有待挖掘”-信用卡交易记录-用户交易往来记录-用户贷款还款数据-客户基本信息-基本评分数据2. 尚未有效 使用的数据- 银行网站互动信息和使用行为信息- 社交媒体公众号信息- 呼叫中心录音数据- 移动银行用户定位和行为数据- 监控视频3. 多样多维丰富的外部数据- 如运营商数据、主流电商网站数据;上网痕迹数据;
9、- 旅行航空数据等;- 企业用户行业数据;- 企业用户经营相关数据;- 企业用户纳税和工商数据;- 房租水电数据- 用户的三表数据明略大数据画像样例标签维度标签维度子维度子维度关键词匹配关键词匹配语义分析语义分析机器学习机器学习标签文本标签文本标签取值标签取值姓名姓名姓y姓置信度名y名置信度人口属性人口属性性别yyy0表示女,100表示男年龄y年龄置信度教育程度y0,1,2,3置信度收入水平y0,1,2,3置信度职业yy职业置信度地域yy地域置信度家庭成员家庭成员有配偶y0表示无,100表示有有老人y0表示无,100表示有有子女yy0表示无,100表示有有宠物yy0表示无,100表示有消费兴趣
10、消费兴趣行业大类yy频次子类目yy频次个性标签yy频次推荐标签y置信度大数据客户画像实战模型 - 大数据客户画像实战模型 - 自定义自定义航空出行yy频次租车yy频次旅游yy频次信用卡yy频次P2Pyy频次外部数据源y置信度逾期y频次退货y频次统计指标统计指标短信数量短信数量高频词 高频词(多个)频次(多个)优质客户特征分析- 模型流程模型流程个人信贷数据数据清洗特征处理特征降维基于经验规则标注K-近邻算法补充信贷经理标注优质/不良客户识别模型新客户识别结果存量客户精耕细作 优质分析#1、基于经验规则标注种子、基于经验规则标注种子#2、K-近邻算法补充近邻算法补充#3、信贷经理标注验证、信贷经
11、理标注验证#4、最终结果、最终结果存量客户分析的一些基本算法优质客户&不良客户特征分析共发现客户92万多个特征其中有效区分优质不良客户的特征9000多个存量客户分析的算法和模型优化优质客户&不良客户统计存量客户分析结果样例优质客户&不良客户特征分析存量客户分析结果样例优质客户&不良客户特征分析存量客户分析结果样例存量客户分析结果样例数据+平台+应用“三位一体”方法论26第一阶段:存量客户统一视图实施路线业务指标摸底业务指标摸底数据数据现状调研和分析现状调研和分析数据治理数据治理和和规范规范标准标准大数据平台大数据平台-可控的-好用的-数据一致的-反应及时的-弹性
12、可扩展的客户统一客户统一视图视图- 业务部门- 信科部- 数据源头摸底系统化调查、记录、整理- 总行数据库平台- 省行数据下载平台- 业务分析和业务发展需求(和数据平台支撑相关)调研并确定最优先业务- 目前数据质量分析- 数据治理重点领域规划- 数据标准和规范机制规划和执行计划 客户基本信息 客户联系信息 客户关系信息 客户服务和互动信息 客户VIP分析循环调研分析和输出物讨论,螺旋式不断完善存量客户梳理统一视图结果图存量客户梳理统一视图结果图银行已有数据资产:客户关系CRM系统, ECIF系统中的数据.外部数据 = 不同特征、不同维度的数据使用场景 (应景弹性变化的数据); 客户准入: 直接
13、验证 (手机# 姓名 证件#) 规则: 过去的信贷历史 (增值服务平台如短信) 风险级别: 不同程度的审核审查; 客户风险的综合评价、各种模型 进行定价; 精准获客(广告的精准投放) 贷款人预筛选、预审批 (如白名单); 逾期管理: 催收的策略和催收的手段(催缴公司黑名单);第二阶段:引入外部数据数据分析体系数据分析体系现有系统现有系统-业务体系业务体系银行集中的数据中心银行集中的数据中心各业务条线各业务条线系统系统财务系统财务系统会计系统会计系统支撑系统支撑系统【如客管系统如客管系统】柜台业务柜台业务ATM/电子银行电子银行POS/商易通商易通报表统计风险控制综合营销通知预警平台业务提醒决策
14、分析管理、统计报表绩效考核自定义查询平台报表生成平台大数据平台大数据平台目前银行数据源梳理整合到某统一数据交换平台数据处理与完善外部数据源第三阶段: 建设大数据平台路线演进图 数据量巨大,低成本实现了传统关系型数据库无法处理的复杂数据分析 基于数据挖掘(DataInsight)和可视化产品,持卡人的自动化画像和消费预测等业务应用 业务上完成商圈聚合分析, 20种持卡人的自动化画像,持卡人的100+多维分析和关联挖掘分析, 竞争交叉分析; 持卡人消费预测的精准度使得银联和主要商户一起进行精准营销和个性化推荐银联商务海量交易流水的客户行为分析和预测商圈竞争形势分析刷卡笔数刷卡金额椭圆状:商店与商圈
15、内同行业其它商店的比对。椭圆形状越宽,表示商店的笔数越高,椭圆形状越长,表示商店的金额越高。2014年X月分店选择银联商务商圈聚合和竞品分析所在省直辖市分店产品组合关联度产品组合利润率(假定1:1)星级标志产品C和产品X33%12%产品X和产品Z28%11%产品D和产品F25%5%产品G和产品O22%4%产品A和产品C15%9%产品X和产品Y12%3%产品H和产品L12%14%产品F和产品P10%7%产品品类组合自动分析1、关联度:用户同时购买2种产品的关联指数。关联度越高,同时购买的可能性越大。2、产品组合利润率指用户同时购买组合产品时商户所获得的利润率。以两种产品等重为前提。3、标星的产品
16、组合是银联商务向商户推荐的产品促销组合。银联商务用户购物篮分析 每促销一单位的产品Z (默认金额最高的产品,此处可对其它品类进行选择)对其它产品的影响对刷卡笔数笔数的影响对刷卡金额金额的影响对刷卡收入的影响对刷卡收益的影响2014年X月分店选择银联商务品类促销分析 ZestFinance(原名ZestCash)新兴的互联网金融公司 使用机器学习的方式评估个人贷款的信贷风险指数。研发主要团队有数据科学家、数学家和计算机科学家组成。ZestFinance利用机器学习和大数据分析,提供全新的客户信贷征信服务。前谷歌首席信息官Douglas Merrill和Capital One 公司前高管Shawn
17、 Budde创建。分析上万个(达70000个)潜在信用变量从财务信息到可以使用的一切数据以更好地获取诸如潜在欺诈、长期客户关系等元素。大数据分析模式高于现在行业最佳水平40%。更精确的信贷决策,使得借款人有更高的信用额度,而贷款机构有更高的还款率。前期业务提供放贷,后来越来越多信用评估业务。大数据分析使得贷款机构得以批量增加客户群,从竞争对手中得到更多的生意,同时更好地服务现有客户,而充分控制好违约率。从本质上讲,这是一家数据科学家企业,它精通数据计算、关联分析和深度机器学习。到2015年5月梅里尔麾下的百人团队中,大部分是数据科学家,他们全新开发了10+个基于学习机器的分析模型,对每位信贷申
18、请人的超过几万条原始信息数据进行分析,并得出万个可对其行为做出测量的指标: 这一切5秒钟完成。结果,ZestFinance称这种方式比传统的衡量模型提升了60的效率,更重要的是,还款率也比传统的方法高出了90。该公司旨在为那些个人信用不良或者不满足传统银行贷款资格的个人提供服务。目前业务已经发展到提供信用评估。美国互联网金融公司ZestFinancel 针对非专业人员的专业大数据挖掘工具l 基于Spark技术构建的并行大数据挖掘平台l 与企事业数据和应用无缝对接,减少模型再次部署和开发的成本支持用户基于指定的数据集合通过直观的界面操作创建、管理和执行数据挖掘模型;内置了高效的转换器和分析器,来帮助用户实现自己对于数据分析的想法,并且还提供了有效的模型参数调整和反馈机制,支持用户随时优化。算法模型用户精准画像个性化推荐自然语言分析 用户精准画像 人口属性画像 行为属性画像 业务属性画像 个性化推荐 个性化商品推荐 个性化信息推荐 个性化业务推荐 自然语言分析 用户浏览内容 用户反馈情感 领域/类别模型构建 三大算法模型聚类算法 K-Means K-Center K-Medoid推荐算法 User-based Collaborative Filter I
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 从容面对:育婴师试题及答案
- 提升人力资源管理能力的试题及答案解析
- 现代农业技术培养方案(最终)
- 投资策略的选择及应用试题及答案
- 小学家长会感恩教育
- 2024图书管理员行业案例研究试题及答案
- 黑龙江林业职业技术学院《口腔解剖生理学综合实训》2023-2024学年第二学期期末试卷
- 如何通过礼仪提升客户满意度试题及答案
- 黑龙江省佳木斯市桦川县2025年五下数学期末统考模拟试题含答案
- 黑龙江省哈九中2024-2025学年高三摸底(4月)调研测试物理试题含解析
- 新教材高中历史必修中外历史纲要上全册教学课件
- 《我为班级添光彩》主题班会课件
- 如何赏析英文诗歌
- 公共部门人力资源管理概论课件
- 西门子s7硬件相关-simadynd介绍
- 风电齿轮箱结构原理及维护知识课件
- 【计算机应用基础试题】韩山师范大学2022年练习题汇总(附答案解析)
- 文件袋、档案袋密封条模板
- 10t单梁起重机安装方案
- 科技小巨人工程验收培训
- 环境经济学课件:第十次课 环境污染与效率费效分析等
评论
0/150
提交评论