期货合约之评价模式_第1页
期货合约之评价模式_第2页
期货合约之评价模式_第3页
期货合约之评价模式_第4页
期货合约之评价模式_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1第四章第四章 2本章內容本章內容w 期貨合約之評價模式期貨合約之評價模式w 持有成本模型之修正持有成本模型之修正w 期貨價格和預期未來現貨價格的關係期貨價格和預期未來現貨價格的關係w 期貨之基差和價差的意義期貨之基差和價差的意義w 結語結語3期貨合約之評價模式期貨合約之評價模式w 一個均衡的金融商品價格,必然隱含在該價格之下,投資者找不到任何的套利(Arbitrage)機會存在的。利用市場達到均衡時,則必然不存在套利機會的條件,我們可以簡明地推導出期貨合約之評價模式。w 套利指的是投資者在今天不花自己一毛錢去建構一種交易策略,卻有正的機率存在,使其在未來某一特定時點,可以獲取某一特定額度的利

2、潤。4期貨合約之評價模式期貨合約之評價模式w 假設一個麵粉製造商預計三個月後需要十萬公噸的小麥投入生產,那麼為了使其生產成本在今天即確定,其可以選擇下列兩種交易策略來達成:1)融資買入小麥現貨十萬公噸並貯藏持有三個月2)以今天期貨市場上的交易價格買入三個月到期的小麥期貨一口(假設一口小麥期貨契約規格為十萬公噸)5期貨合約之評價模式期貨合約之評價模式(續續)w 對此一麵粉製造商而言,不管其選擇交易策略(1)或(2),皆可以使其三個月後有十萬公噸的小麥投入生產,因此不管執行交易策略(1)或(2),他所願意支付的價格或成本都一樣。職是之故,執行交易策略(1)所形成的投資組合(A)的價值,應等於執行交

3、易策略(2)所形成的投資組合(B)的價值,否則市場即存在套利機會。6圖圖4-1 無套利條件關係無套利條件關係投資組合A投資組合B現在(現在(t=0)到期日(到期日(t=T)投資組合A和B有相同價值投資組合A的價值投資組合B的價值中間無現金流量產生或者:時點時點t若投資組合的價值若投資組合的價值0 時點時點T投資組合的價值投資組合的價值=07期貨合約之評價模式期貨合約之評價模式(續續)w 以麵粉製造商的例子,說明圖4-1無套利條件關係。如果投資組合A或B在期貨合約到期日(t=T),都可以提供給麵粉製造商相同的東西(小麥十萬公噸),那麼投資組合A和B在現在(t=0)之市場價值必然要相等,否則市場上

4、即存在套利機會。w 再者,無風險套利的觀念也可由圖4-1之下半部來解釋。也就是如果在時點t某一投資組合的價值(現金流量)為零,那麼在時點T此一投資組合的價值(現金流量)亦必須為零,否則將存在套利機會。8期貨合約之評價模式期貨合約之評價模式(續續)w 投資組合A和B在時點t=0及t=T所產生之現金流量:時點時點0時點時點T投資組合A買入現貨S(0)S(T)融資-S(0)-S(0)1+CC-CR淨現金流量淨現金流量0S(T)-S(0)1+CC-CR投資組合B買入到期日T的期貨0S(T)-F(0,T)淨現金流量淨現金流量0S(T)-F(0,T)9持有成本模型持有成本模型(cost of Carryi

5、ng Model)F(0,T) = S(0) 1+CC-CRw 假設:1.市場為完全競爭市場,故任何一個交易者皆為價格接受者(Price Taker)。2.不考慮交易稅、手續費等相關費用,亦即市場處於無摩擦(frictionless)狀態。3.不考慮違約風險。4.賣空標的資產不受限制。5.市場價格可以自由調整。10持有成本模型持有成本模型(cost of Carrying Model)F(0,T) = S(0) 1+CC-CRw 連結現貨價格和期貨價格間的關係,可用來判別市場為正向市場(Normal Market)或反向市場(Inverted Market)。若CC大於CR,則遠月份期貨價格近

6、月份期貨價格現貨價格,此種情形稱之為正向市場若CC小於CR,則遠月份期貨價格近月份期貨價格 0,我們稱之為遠期升水(Forward Premium)如果(r-rf) 0,我們稱之為遠期貼水(Forward Discount)13應用二:外匯期貨之評價模式應用二:外匯期貨之評價模式F(0,T) = S(0) 1+r-rf【例【例】一個到期期限為一年的馬克外匯期貨,若即期匯率為0.6(USD/DEM),而一年期之美元定存利率為3%,且一年期之馬克定存利率為4%,我們可以計算出該馬克外匯期貨合約之無套利均衡價格為:F(0,T) = 0.6 1+0.03-0.04 = 0.59414應用三:商品期貨之

7、評價模式應用三:商品期貨之評價模式F(0,T) = S(0) 1+r+sc-cy【例【例】一個到期期限為一年的黃金期貨,若現貨價格為每盎司USD350,而一年期之美元定存利率為3%,且一年期之黃金儲藏成本為0.5%,再則若方便收益率為0.3%,則根據我們可以計算出該黃金期貨合約每盎司之無套利均衡價格為:F(0,T) = USD3501+0.03+0.005- 0.003 = USD361.215應用四:套利交易策略之建構應用四:套利交易策略之建構w 承上例,若市場上一年期的黃金期貨價格為每盎司363,則他可建構下列交易策略來獲利:現在現在一年後一年後買入黃金現貨350S(T)融資-350-36

8、1.2賣出黃金期貨0-(S(T)-363)淨現金流量01.816持有成本模型之修正持有成本模型之修正w 修正一:買賣價差存在及考慮交易手續費修正一:買賣價差存在及考慮交易手續費 S(0)A1+CC-CR-cfF(0,T) S(0)B1+CC-CR+cf .(4-6) 其中 cf:期貨來回之手續費金額 S(0)A:現貨之賣出價格 S(0)B:現貨之買入價格17【例【例】- - 修正一修正一w 一個到期期限為一年的黃金期貨,若現貨價格為每盎司USD350,而一年期之美元定存利率為3%,且一年期之黃金儲藏成本為0.5%,再者方便收益率為0.3%,如果黃金現貨之賣出價格為每盎司USD349,而黃金現貨

9、之買進價格為每盎司USD351,且每一盎司黃金期貨來回手續費為USD0.35,根據(4-6)式我們即可以計算出該黃金期貨合約每盎司之無套利均衡價格之上下限各為: 上限價格上限價格 = USD351(1+0.03+0.005-0.003)+0.35 = USD362.58 下限價格下限價格 = USD349(1+0.03+0.005-0.003)-0.35 = USD359.8218持有成本模型之修正持有成本模型之修正w 修正二:買賣價差存在修正二:買賣價差存在、考慮交易手續費及考慮交易手續費及借貸利率不相等借貸利率不相等 S(0)A1+CCL-CR-cfF(0,T) S(0)B1+CCB-CR

10、+cf .(4-7) 其中 CCL:以百分比表示由時點0至時點T之持有成本(包 括貸款利率(rL) 、儲藏成本)。 CCB:以百分比表示由時點0至時點T之持有成本(包 括借款利率(rB) 、儲藏成本)。19【例【例】- - 修正二修正二w 一個到期期限為一年的黃金期貨,若現貨價格為每盎司USD350,而一年期之美元貸款利率和借款利率分別為2.8%及3.2%,且一年期之黃金儲藏成本為0.5%,再則若方便收益率為0.3%,如果黃金現貨之賣出價格為每盎司USD349,而黃金現貨之買進價格為每盎司USD351,且每一盎司黃金期貨來回手續費為USD0.35,根據(4-7)式我們可以計算出該黃金期貨合約每

11、盎司之無套利均衡價格之上下限各為:上限價格上限價格 = USD351(1+0.032+0.005- 0.003)+0.35 = USD363.28 下限價格下限價格 = USD349(1+0.028+0.005-0.003)- 0.35 = USD359.1220持有成本模型之修正持有成本模型之修正w 修正三:買賣價差存在修正三:買賣價差存在、考慮交易手續費考慮交易手續費、借借貸利率不相等且現貨有賣空限制貸利率不相等且現貨有賣空限制 S(0)A1+krL+sc-CR-cfF(0,T) S(0)B1+CCB-CR+cf .(4-8) 21【例【例】- - 修正三修正三w 承【例】修正二,一個到期

12、期限為一年的黃金期貨,若現貨價格為每盎司USD350,而一年期之美元貸款利率和借款利率分別為2.8%及3.2%,且一年期之黃金儲藏成本為0.5%,再則若方便收益率為0.3%。如果黃金現貨之賣出價格為每盎司USD349,而黃金現貨之買進價格為每盎司USD351,且每一盎司黃金期貨來回手續費為USD0.35,此外,若賣空所得之80%可自由運用,根據(4-8)式我們可以算出該黃金期貨合約每盎司之無套利均衡價格之上下限各為:上限價格上限價格 = USD351(1+0.032+0.005-0.003)+0.35= USD363.28下限價格下限價格 = USD349(1+0.028 0.8+0.005-

13、0.003)-0.35=USD357.1722持有成本模型之適用性持有成本模型之適用性w 一般而言,若標的資產賣空限制越少、無明顯之季節性生產和消費、且容易儲存,則持有成本模型可以較準確地評價具有上述特質為標的資產之期貨合約。例如:黃金、白銀等貴重金屬期貨,以及外匯期貨。23期貨價格和預期未來現貨價格的關係期貨價格和預期未來現貨價格的關係w 預期理論期貨價格是未來現貨價格的不偏估計值。亦即期貨價格應等於其到期日之現貨價格的預期值。 F(t,T) = EtSTw 如果預期理論成立,則交易任何期貨部位所產生之預期未來現金流量皆應等於零。期貨市場的投機者為風險中立者。24期貨價格和預期未來現貨價格的

14、關係期貨價格和預期未來現貨價格的關係w 預期理論的反論凱因斯認為期貨價格是未來現貨價格的偏誤估計值。正常交割延遲(Normal Backwardation) F(t,T) EtST25期貨價格之可能型態期貨價格之可能型態期貨價格Expected Future Spot Price (預期未來之現貨價格)Normal BackwardationNormal Contango26實證:實證:F(t,T) = EtSTw Kamara(1984):雖然一般認為期貨市場的主要使用者是風險趨避的避險者,但證據顯示避險者購買此種期貨保險的代價很低。因此期貨價格平均來說並不包含顯著的風險溢酬。w 根據CAP

15、M的論點,只有承擔不可分散的系統性風險,投資者才可以要求額外的風險溢酬。因此交易期貨是否享有風險溢酬,端視期貨部位計算出來的貝它係數是否大於零而定。結果發現不同標的資產之期貨部位的貝它係數,有時為正、有時為負或有時為零。顯示CAPM並無法有效說明期貨價格和預期未來現貨價格的關係為何。27期貨之基差期貨之基差w 所謂基差(basis)乃指現貨價格和期貨價格之間的差額,亦即基差 = 現貨價格 - 期貨價格w 根據持有成本模型,基差之正或負取決於(CC-CR)為正或負而定。但不管期貨合約之差為正或負,其於到期時基差必收斂為零。w 正價差(基差為負):期貨價格現貨價格逆價差(基差為正):期貨價格現貨價格28期貨之價差期貨之價差w 所謂價差(spread)乃指不同期貨合約之間的價格差異,亦即 價差 期貨A的價格 - 期貨B的價格w 價差可分成兩大類:1)商品內價差(Intra-Commodity Spread):相同標的資產,不同到期日

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论