等差数列求和教案_第1页
等差数列求和教案_第2页
等差数列求和教案_第3页
等差数列求和教案_第4页
等差数列求和教案_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、等差数列前n项和教学内容本节课选自普通高中课程标准实验教科书必修5的第二章2.3等差数列前n项和教学目标1.掌握等差数列前项和的公式,并能运用公式解决简单的问题.2.了解等差数列前项和的定义,了解逆项相加的原理,理解等差数列前项和公式推导的过程,记忆公式的两种形式;3.用方程思想认识等差数列前项和的公式,利用公式求;等差数列通项公式与前项和的公式两套公式涉及五个字母,已知其中三个量求另两个值;教学重点1.等差数列前项和公式的推导和应用2.用梯形面积公式记忆等差数列前项和公式.教学难点等差数列前n项和公式推导的思路教学用具多媒体软件,图片等教学过程一.新课引入提出问题:一个堆放铅笔的V形架的最下

2、面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放100支.这个V形架上共放着多少支铅笔?问题就是(板书)“”这是小学时就知道的一个故事,高斯的算法非常高明,回忆他是怎样算的.(由一名学生回答,再由学生讨论其高明之处)高斯算法的高明之处在于他发现这100个数可以分为50组,第一个数与最后一个数一组,第二个数与倒数第二个数一组,第三个数与倒数第三个数一组,每组数的和均相等,都等于101,50个101就等于5050了.高斯算法将加法问题转化为乘法运算,迅速准确得到了结果.求一般的等差数列的和,高斯算法对我们有何启发?二.讲解新课(板书)等差数列前项和公式1.公式推导(板书)问题:设等

3、差数列的首项为,公差为,由学生讨论,研究高斯算法对一般等差数列求和的指导意义.思路:根据高斯的算法,问题是一共有多少个 ,这个与n的奇偶有关,为回避个数问题,把等式的右边做一个改写,倒着写,得,左右分别相加,得,上节课我们学习了等差数列通项公式an=a1+(n-1)d于是.于是得到了两个公式:和.2.公式记忆用梯形面积公式记住等差数列前项和公式3.公式的应用公式中含有四个量,运用方程的思想,知三求一.例1.求和:(1);(2)(结果用表示)解题的关键是数清项数,小结数项数的方法.例2.等差数列中前多少项的和是9900?本题实质是反用公式,解一个关于的一元二次函数,注意得到的项数必须是正整数.三.小结1.推导

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论