初二数学勾股定理知识点及习题_第1页
初二数学勾股定理知识点及习题_第2页
初二数学勾股定理知识点及习题_第3页
初二数学勾股定理知识点及习题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【勾股定理知识点及典型例题】班级: 姓名: 一知识归纳勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为,斜边为,那么勾股定理的由来:勾股定理也叫商高定理,在西方称为毕达哥拉斯定理我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦早在三千多年前,周朝数学家商高就提出了“勾三,股四,弦五”形式的勾股定理,后来人们进一步发现并证明了直角三角形的三边关系为:两直角边的平方和等于斜边的平方2、.勾股定理的应用已知直角三角形的任意两边长,求第三边在中,则,知道直角三角形一边,可得另外两边之间的数量关系可运用勾股定理解决一些实际问题3.勾

2、股数能够构成直角三角形的三边长的三个正整数称为勾股数,即中,为正整数时,称,为一组勾股数记住常见的勾股数可以提高解题速度(这个一定要牢记于心)常见勾股数:3、4、5;6、8、10;5、12、13;8、15、17;7、24、25。考点一:勾股定理的直接应用例1.正方形的面积是2,它的对角线长为( )A、1 B、2 C、 D、 (例2图)例2如图,由RtABC的三边向外作正方形,若最大正方形的边长为8cm,则正方形M与正方形N的面积之和为考点二:求第三条边的长例1若RtABC中,且c=37, a=12,则b=( )A、50 B、35 C、34 D、26例2已知两线段的长为6cm和8cm,当第三条线

3、段取 时,这三条线段能组成一个直角三角形。(提示:所给的两条边长不一定都为直角边。)例3若一个直角三角形的三边分别为a、b、c, ,则( )A、169 B、119 C、169或119 D、13或25 考点三:与高、面积有关例1两条直角边分别是3和4的直角三角形斜边上的高是 例2等腰三角形的底边为10cm,周长为36cm,则它的面积是4.勾股定理的逆定理如果三角形三边长,满足,那么这个三角形是直角三角形,其中为斜边勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,判断步骤:先比较a、b、c大小,找最长边,可用两小边的平方

4、和与较长边的平方作比较,若它们相等时,以,为三边的三角形是直角三角形;若,时,以,为三边的三角形是钝角三角形;若,时,以,为三边的三角形是锐角三角形;定理中,及只是一种表现形式,不可认为是唯一的,如若三角形三边长,满足,那么以,为三边的三角形是直角三角形,但是为斜边勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形例1木工师傅要做一个长方形桌面,做好后量得长为80cm,宽为60cm,对角线为100cm,则这个桌面 。(填“合格”或“不合格” )例2试判断:三边长分别是的三角形是不是直角三角形? 【习题】【勾股定理】一、选择题1、把直角三角形的

5、两直角边均扩大到原来的2倍,则斜边扩大到原来的几倍?( )A、2 B、4 C、3 D、5 2、等腰ABC的底边BC为16,底边上的高AD为6,则腰长AB的长为( )A10 B.12 C.15 D.203、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱 形水杯中,如右图所示,设筷子露在杯子外面的长度hcm,则h的取值范围是( )A、h17cm B、h8cm C、15cmh16cm D、7cmh16cm二、填空题1、如果梯子底端离建筑物5m,那么13m长的梯子可达到建筑物的高度是_m。2、如图,一圆柱高,底面半径,一只蚂蚁从点爬到点处吃食,要爬行的最短路程是 cm3、如右图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为5,则正方形A,B,C,D的面积的和为 。4一个零件的形状如图,按规定这个零件的与都要是直角,工人师傅量得零件各边尺寸:AD=4,AB=3,DC=12,BC=13,BD=5。这个零件符合要求吗?5.已知中,边上的中线,求证:ABCMN6.如图,南北方向MN为我国领海线,即MN以西是我国领海,以东为公海,上午9时50分,我国反走私艇A发现正东方向有一走私船C以13海里/时的速度偷偷向我国领海开来,便立即通知正在MN线上巡逻的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论