![高等数学课件:2013.11.19-习题课(第一章)_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/d9145a9b-b72b-4b34-a197-08dbff0c7ee8/d9145a9b-b72b-4b34-a197-08dbff0c7ee81.gif)
![高等数学课件:2013.11.19-习题课(第一章)_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/d9145a9b-b72b-4b34-a197-08dbff0c7ee8/d9145a9b-b72b-4b34-a197-08dbff0c7ee82.gif)
![高等数学课件:2013.11.19-习题课(第一章)_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/d9145a9b-b72b-4b34-a197-08dbff0c7ee8/d9145a9b-b72b-4b34-a197-08dbff0c7ee83.gif)
![高等数学课件:2013.11.19-习题课(第一章)_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/d9145a9b-b72b-4b34-a197-08dbff0c7ee8/d9145a9b-b72b-4b34-a197-08dbff0c7ee84.gif)
![高等数学课件:2013.11.19-习题课(第一章)_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-1/24/d9145a9b-b72b-4b34-a197-08dbff0c7ee8/d9145a9b-b72b-4b34-a197-08dbff0c7ee85.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、二、二、 导数应用导数应用习题课一、一、 微分中值定理及其应用微分中值定理及其应用机动 目录 上页 下页 返回 结束 中值定理及导数的应用 第三三章 拉格朗日中值定理 )()(bfaf一、一、 微分中值定理及其应用微分中值定理及其应用1. 微分中值定理及其相互关系微分中值定理及其相互关系 罗尔定理 0)(fxyoab)(xfy )()()()()()(FfaFbFafbfabafbff)()()()()()(bfafxxF 柯西中值定理 xxF)(xyoab)(xfy机动 目录 上页 下页 返回 结束 2. 微分中值定理的主要应用微分中值定理的主要应用(1) 研究函数或导数的性态(2) 证明恒
2、等式或不等式(3) 证明有关中值问题的结论机动 目录 上页 下页 返回 结束 (4) 利用洛必达法则求极限3、未定式、未定式:,0 ,00,1型0解决方法解决方法:通分转化转化000取倒数转化转化0010取对数转化转化机动 目录 上页 下页 返回 结束 0,0说明说明利用洛必达法则求极限,注意利用洛必达法则求极限,注意(1)两种基本形式的解题方法要熟悉(2) 其它类型的未定式转化为基本形式的方法要明确(3) 要结合以前学过的各种方法,灵活解题.机动 目录 上页 下页 返回 结束 二、二、 导数应用导数应用1. 研究函数的性态:增减 , 极值 , 凹凸 , 拐点 , 渐近线 ,曲率2. 解决最值
3、问题 目标函数的建立与简化 最值的判别问题3. 其他应用 :求不定式极限 ;几何应用 ;相关变化率;证明不等式 ;研究方程实根等.机动 目录 上页 下页 返回 结束 的连续性及导函数例例1. 填空题填空题(1) 设函数上连续,在),()(xf的则)(xf其导数图形如图所示,机动 目录 上页 下页 返回 结束 单调减区间为 ;极小值点为 ;极大值点为 .)(xf ),0(),(21xx),(),0,(21xx21, xx0 x提示提示:)(xf根据的正负作 f (x) 的示意图. 单调增区间为 ;o2x1xyxox)(xf1x2xo)(xfx .在区间 上是凸弧 ;拐点为 ),0(),(21xx
4、)0(, 0( ,)(,( ,)(,(2211fxfxxfx提示提示:)()(xfxf 的可导性及根据的正负作 f (x) 的示意图. 形在区间 上是凹弧; 则函数 f (x) 的图 (2) 设函数上可导,在),()(xf的图形如图所示,机动 目录 上页 下页 返回 结束 ),(),0,(21xx)(xf o2x1xyx2x)(xf 1xln)1ln()()(1xxxfxf例例2. 证明在xxxf)1 ()(1),0(上单调增加.证证:)1ln()(ln1xxxfln)1ln(xxx11ln)1ln()11()(xxxxxfx令,ln)(ttF在 x , x +1 上利用拉氏中值定理,机动 目
5、录 上页 下页 返回 结束 111xxx) 10(1ln)1ln(xxxxx11故当 x 0 时,0)( xf从而)(xf在),0(上单调增.得例例3. 设在)(xf),(上可导, 且证明 f ( x ) 至多只有一个零点 . 证证: 设)()(xfexx则 )()()(xfxfexx0,0)()(xfxf故)(x在),(上连续单调递增, 从而至多只有一个零点 .又因,0 xe因此)(xf也至多只有一个零点 .思考思考: 若题中0)()(xfxf改为,0)()(xfxf其它不变时, 如何设辅助函数?)()(xfexx机动 目录 上页 下页 返回 结束 例例4. 求数列nn的最大项 .证证: 设
6、),1()(1xxxfx用对数求导法得)ln1()(21xxxfx令,0)( xf得, ex x)(xf )(xfe), 1e),(e0ee1因为)(xf在),1只有唯一的极大点,ex 因此在ex 处)(xf也取最大值 .又因,32 e442 且,33nn为数列故33中的最大项 .极大值机动 目录 上页 下页 返回 结束 列表判别:例例5. 证明. )0(1arctan)1ln(xxxx证证: 设xxxxarctan)1ln()1 ()(, 则0)0(211)1ln(1)(xxx)0(0 x故0 x时, )(x单调增加 , 从而0)0()(x即)0(1arctan)1ln(xxxx机动 目录
7、上页 下页 返回 结束 例例6. 设,0)0(f且在),0上)(xf 存在 , 且单调递减 , 证明对一切0,0ba有)()()(bfafbaf证证: 设, )()()()(xfafxafx则0)0()()()(xfxafx)0(0 x所以当时,0 x)(x0)0(令,bx 得0)()()()(bfafbafb即所证不等式成立 .机动 目录 上页 下页 返回 结束 例例7. 求)0()1arctan(arctanlim2ananann解法解法1 利用中值定理求极限原式)1(11lim22nanann之间)与在1(nana221) 1(limannnna机动 目录 上页 下页 返回 结束 解法解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现代家居装饰风格与心理健康关系探讨
- 构建以服务功能为导向的绿色生态环境教育体系
- 生物医药与健康产业的投资潜力研究
- 现代化技术与医疗中心的高层建筑设计思考
- 生态城市建设中环境科学的应用研究
- Unit 5 We're family Period 3 (说课稿)-2024-2025学年外研版(三起)(2024)英语三年级上册
- 2024-2025学年高中生物 第四部分 浅尝现代生物技术说课稿 浙科版选修1
- 2024-2025学年高中物理 第四章 电磁感应 5 电磁感应现象的两类情况(1)说课稿 新人教版选修3-2
- 9古代科技 耀我中华-独领风骚的古代技术创造(说课稿)2023-2024学年统编版道德与法治五年级上册
- 26 手术台就是阵地 说课稿-2024-2025学年统编版语文三年级上册001
- 2022-2023学年五年级数学春季开学摸底考(四)苏教版
- 【蚂蚁保】2024中国商业医疗险发展研究蓝皮书
- 授信审批部工作计划及思路
- 财务管理学(第10版)课件 第3章 财务分析
- 小学语文大单元教学设计与实施
- 小学升初中六年级数学考试试卷含答案(达标题)
- 2024年长沙航空职业技术学院单招职业适应性测试题库完整
- 肿瘤微环境在癌症进展中的作用研究
- 上海市发展改革研究院工作人员招考聘用12人公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 2024年上海市各区高三语文二模试卷【文言文阅读题】汇集练附答案解析
- 家禽消化系统认知
评论
0/150
提交评论