版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第一章系统仿真的基本概念1系统仿真的定义系统仿真定义建立系统模型(数学模型、物理效应模型或数学-物理效应混合模型),并在模型上进行试验。系统仿真范例水利方面在葛洲坝和三峡大坝建设前,许多单位都建立起缩小了的长江水道模型和大坝模型,并进行冲水试验,获得流体力学和结构力学等相关参数,为工程设计提供依据。电力方面在动模实验室中用电动机-发电机组对实际发电厂进行模拟,并且用电感-电容兀形结构模拟输电线路;在高压实验室中用冲击发生器模拟雷电;在计算机上用EMTP软件对电力系统电磁暂态过程进行数值分析,用PSASP软件对电力系统机电动态过程进行数值分析。国防方面用巨型计算机按数学特性相同的原则模拟核裂变(
2、聚变)反应过程,这样可以减少真正核试验的次数,甚至不进行核爆炸试验也能发展出先进的核武器。系统仿真依据最基本的依据是相似定理。从应用角度分析几种相似等效方法:几何比例相似。军事指挥员的沙盘演习。特性比例相似。两个系统运动的物理本质完全不同,但具有相似的微分方程,且参数一一对应,我们称这两个系统的特性比例相似。机械系统KMDd2XdX微分方程M、D呸dt2dt参数对应距离X/速度dX/dtKXF(t)L竺R鸾lqE(t)dt2dtC电荷q电流dq/dt外力F(t)/电源E(t)质量M/电感L阻尼系数D弹簧系数K图1-1两个系统果F性比例相似电阻R1/电容1/C注:动模试验也是根据特性比例相似的原
3、则,这个原则可理解为真实系统与模拟系统具有相同的无量纲(标幺值)方程。感觉相似。主要是视觉、听觉、触觉和运动感觉相似,是人在模拟环境中的仿真,特别是用各类模拟器件对操作人员进行训练的依据。如航天员在宇航中心培训,宇航中心就是一个虚拟太空环境。逻辑思维方法相似。对获取的信息进行分析、归纳、综合、判断直至操作控制的方法相似。例如机器人。微分方程的数值解法、离散相似法。如数值方法中的龙格-库塔法、差分法、非线性曲线的分段线性化等。这是数字仿真的基础。电力系统仿真就是以电力系统为仿真对象的系统仿真。1- 2系统仿真的作用人类认识或研究、开发一个系统可以通过理论推演或实物试验的方法进行,但对于一些大的、
4、复杂系统,如一个电网,无法得到其数学模型的解析解,有的子系统甚至无法得到可信的数学模型,而由于多种条件限制,实物试验不可能做或做起来困难很大,这样就只能借助于模型试验(即仿真)来达到认识或研发一个系统的目的。通常在下列情况时一般考虑用模型试验(仿真)而不用实物试验:1)系统还处于设计阶段,并没有真正建立起来,因此不可能在真实系统上进行实验;2)在真实系统上做试验会破坏系统运行。例如在正常运行的电网中做一个短路故障试验,有可能造成系统剧烈振荡乃至崩溃;3)如果人是系统的一部分时,由于知道自己是试验的一部分,行为往往会和平常不同,因此会影响试验效果,这时最好将人也建立模型。例如一些基于专家系统的软
5、件或装置;4)在实际系统上做多次试验时,很难保证每次的操作条件都相同,因而无法对试验结果做出正确判断。例如一个电器产品为什么要通过型式试验和出厂试验,就是为了人为地设置一些确切的操作条件,以获得对未来使用性能的正确判断;5)试验时间太长或费用太高或有危险。例如“神州3号、4号”上的模拟人;6)系统无法复原。例如,想要知道变电站运行中的变压器绝缘到底能够耐受多高冲击电压,不可能真的对正在运行的变压器施加很高的冲击电压。有些学者以较为学术化的术语归纳了仿真方法的适用情况:1)不存在完整的数学公式,或者还没有一套解答数学模型公式的方法;2)虽然可以有解析法方法,但数学过程太复杂,仿真可以提供比较简单
6、的求解方法;3)解析解存在而且是可能的,但超出了个人的数学能力,因而应该估计一下,建立仿真模型、检查并且运行模型的费用比起向外求助以获得解析解,何者合算;4)希望在一段较短的时间内能观测到过程的全部历史,以及估计某些参数对系统行为的影响;5)难于在实际的环境中进行实验观测;6)需要对系统或过程进行长期运行的比较,而仿真则可以随意控制时间,使它加快或减慢。1-3系统仿真的分类仿真可以有多种分类方法。按系统模型的类型,可分为:1)连续系统仿真一一系统模型以微分方程描述;2)间断(事件)系统仿真系统模型以面向事件、面向进程、面向活动的方式描述;3)连续/间断(事件)混合系统仿真;4)定性系统仿真一一
7、系统模型以模糊理论等描述。按仿真的实现方法和手段,可分为:1)物理仿真;2)计算机仿真,又称数学仿真;3)实物在回路中的仿真,一般称为半实物仿真;4)人在回路中的仿真。物理仿真要求模型与原型有相同的物理属性,其优点是模型能最真实全面地体现原系统特性,缺点是模型制作复杂、成本高、周期长、灵活性差;计算机仿真的优缺点正好与物理仿真相反。1-4计算机仿真的三个要素与三项基本活动计算机仿真(即数学仿真)采用数学模型,它是用数学语言描述系统行为的特性。计算机仿真的三个要素是:系统、模型、计算机。联系它们的三项基本活动是:模型建立、仿真模型建立(又称二次建模)、仿真试验。三个要素和三项基本活动的相互关系如
8、图1-2。图1-2计算机仿真的三要素和三项基本活动从下一章起,主要内容是针对连续系统的计算机仿真模型的建立。第二章集中参数网络的瞬态分析概念理解一:连续系统仿真模型的建立,就是将系统的微分方程模型按某种数值计算方法处理成时间离散的代数表达式,易于计算机逐个步长地递推求解。概念理解二:微分方程初值问题数值求解,一般指的是,由变量在初始时刻t0的值(已知),按确定时间步长At(通常设为固定步长)并根据系统计算机模型依次求出变量在t1、t2、.、tk、.的值。2- 1电阻元件R-电流关系)为(2-1)电阻元件的模型(支路电压u(t)=Ri(t)其时间离散的表达式为Uk=Rik仿真模型等值电路的建立如
9、图(2-2)2-1所示I*u(t)离散近似购R图2-1电阻的计算机仿真模型建立0ikUk例2-1图2-2中,Us(t)为u-t函数已知的电压源,求系统的计算机仿真模型。图2-2由电阻元件与已知电源组成的系统Us(t)解由电阻的仿真模型等值电路列系统节点方程G1G2G2G2G2G3G4u2k4.Ui.kGU.k这是一个很容易由计算机编程求数值解的离散形式的线性代数方程组,此模型即为所求。推论由电阻和已知电源构成的线性电路,可直接作为求数值解的计算机模型电路。2- 2电感元件LL的电压-电流关系为u(t)或i(t)Ldi(t)dt1ti(tt)-ttu(t)dt(23)为方便起见,用表示法与电流值
10、一样,ik表示t(或tk)时刻的电流值、ik-1表示t-金(或tk-1)时刻的电流值,电压值的下标将2-3)写成:1tkudtLtk1(24)用梯形近似积分法(图2-3)有:tktUdttk1如.Uk)将(2-4)写成:(Uk12I_'Uk)Uk(ik2L上式又可写成:tUk1)2LUkUk-1tk图2-3梯形积分ikgLUkISL(25)其中gL2L和IsLik1gLUk1公式(2-5)计算机数值递推模型也称为电感元件如图2-4所示:的“瞬态伴随模型”,由数学模型转化为数值模型UkU(t)ikgLISL图2-4电感的仿真模型建立图中右边的数值模型等效电路(电感L的“瞬态伴随模型”等效
11、电路),由一个等效电阻(电导)gLUk-1、和一个等效电流源ISL并联组成,在进行第k步Uk、ik计算时,ISL已由前一步的Uk-1、ik-1得到,是已知的。2-3电容元件Cc的电压-电流关系为i(t)dU(t)Cdt十1t或U(t)U(tt)t(t)dt(26)C同样,用梯形积分近似法,可导出C的数值递推公式(电容元件C的“瞬态伴随模型”):ikgcUkISC(27)2C一其中gC和ISCik1gCUk1c七SCkICk1其等效电路为2-4互感元件电压-电流关系为uL当i其中uui,UnT,iL,inTdt不难导出:t1t一9l-L1-r(28)22数值模型的递推公式与电感L类似,只是矩阵形
12、式而已。2-5非线性电阻电力系统中主要的非线性电阻元件是避雷器,其电压-电流关系为uCi或iKu1/解非线性代数方程,一般用牛顿迭代法设非线性方程为F(x)=0又假设x(0)为方程解的初始“猜测值”,则对真值的第一次逼近x(1)=x(0)-Ax(0)则F(x(0)-A40)=0按泰勒级数展开并略去高阶项,得(0)F(x(0)F(x(0)(0)F(x(0)F(x(0)经过(k-1)次迭代后(k)(k1)xF(x(k1)F(29)实际计算中预先规定精度§当达到(k)(k1)(k1)停止迭代,x(k)就是非线性方程的解。例2-2图2-6为一个含非线性电阻的非线性系统,元件特性标于图中。i=
13、Ku非线性回路方程F(u)U0R1iuU0R1Ku1z套牛顿迭代公式(2-9)得F(u(k1)dFdu(k1)u(k)(k1)uu(210)考察di/du具有电导量纲,将其第(k-1)次迭代时的值以Gd(k-1)表示,它相当于非线性电阻在u(k-1)点处的动态电导。因此dFduu(k1)R1Gdk1)1代入(2-10)得(k)(ku1)U°i(k1)R1u(k1)1R1Gdk1进一步有(Gdk1)u(k)(i(k1)Gdk1)u(k1)R1R1(211)这是一个标准的节点方程形式,不难看出非线性电阻通过牛顿法被“线性化”了(如图2-7)。Is=i(k-1)-Gd(k-1)u(k-1)
14、图2-7非线性电阻的“线性化”计算模型这里特别要注意,牛顿迭代法中的u(k)和前面梯形积分法中的uk区别:在由uk-1求uk的一个步长中,由于非线性元件的存在使得差分方程为非线性,因此必须用牛顿迭代法来解方程。一个可行的处理方法是:设u(0)=uk-1.牛顿迭代.令uk=u(k)uk-11<2-6非线性电感元件特性f(i)(212)磁链是电压的积分t(t)(tt)tN(t)dt由梯形积分法得(t)-tu(t)(tt)2其中(tt):u(tt)(t将上式代入(2-12)得:u(t)(tt)f(i(t)经过整理,可写成非线性电阻和一个已知电源的形式22u(t)"f(i(t)-t(t
15、t)t)(213)例2-3已知非线性电感在t0时刻的初值i0、u0以及特性f(i),问如何算出此后时刻的值?f(i°)t尹0在tl时刻的方程表达式为22uif(ii)0由牛顿迭代解非线性电阻方法,与电路的其它方程式联立得2-7三相常规兀形电路RL图2-8为实际计算中常用的三相耦合兀形电路,经常作为结构对称的交流输电线路的集中参数模型,线路耦合参数R、L、C分别称为串联电阻、串联电感、并联电容。RsRmRm1(2Rpos31_Rzero)互电阻RM一(Rzero3RRmRsRm自电阻RsRpos:RmRmRsLsLmLm1(2Lk。pos31_Lzero)互电感Lm-(LzeroLLL
16、mLsLm自电感Lspos)LmLmLsCsCmCm1(2Cpos31一Czero)非对角兀Cm-(Czero3CCmCsCm对角元CscposCmCmCs实际系统的参数均以正序、零序给出,串联阻抗参数有Zp°s<Zzero,而并联电容参数有Cpos>Czero,丹以C矩阵中的Cm为负数,其数值为相间电容。至于兀形电路的数值模型(瞬态伴随模型),其公式可由单相兀形电路导出,只是R、L、C参数换成矩阵,而i、u变量换成列向量。第三章均匀单导线中暂态过程的计算在这一章里,主要对单导线-地系统的波过程建立数值模型。1长线过渡过程的解一、长线的微分方程式设有一条单导线线路,它的单
17、位长度电阻、电感、电容、电导分别为R0、L0、C0、G0,该线路以长度微元表示的等效电路如图3-1所示。R0dxL0dxxdx3-1单导线线路取电流的正方向为x增加的方向,KVL、KCL可写出如下方程:R°ix-G°uxL。C。(31)这就是长线方程。严格来说,导线存在集肤效应和电晕效应,大地也非理想导体,因此R。、L0、C。、G。应该是电压、电流波形的函数。但在这里,为掌握一般规律起见,R0、L0、C°、G0均视为常数,这也能够符合绝大多数研究项目的精度要求。二、零初始条件下长线方程的解(象函数形式)设S为拉普拉斯算子,dU(x,S)dxdI(x,S)dxZ
18、176;(S)由拉氏变换将(3-1)变成常微分方程(考虑零初始条件)Z°(S)I(x,S)Y°(S)U(x,S)(32)其中:R°SL°Y°(S)G°SC°,Z0(S)Y°(S)Y(S)xF2(S)eY(S)xU(x,S)R(S)eY(S)xc1cI(x,S)R(S)eZ(S)式中F1(S)、F2(S)为待定象函数,由边界条件确定。Y(S)、Z(S)为拉氏运算形式的传播常数和特征Y(S)xF2(S)e(33)Y(S)再令Z(S).,Z0(S)/Y0(S)则(3-2)式的象函数形式的通解为阻抗,其含义为:传播常数Y(
19、S)特性阻抗Z(S)JZ°(S)Yo(S)RoSLo)(GoSCo)11(S)vjZ°(S)/Yo(S)J(RoSL°)/(GoSCo)zS乙一s1为传播速度JL0C01R±%为衰减系数2LoCo1&里为畸变系数2LoCo'Lo为无损线的特性阻抗VC。Zc其中v三、无损长线微分方程的通解形式由于Ro=o,Go=o故Y(S)SLoCoS/vZ(S)Lo/Co代入(3-3)式得U(x,S)I(x,S)xE(S)e七1c-F1(S)eZcxS_F2(S)evxvxS-F2(S)ev(34)利用拉氏变换基本定理f(t)变换eSF(S)写出时域中的
20、通解形式u(x,t)f(tx)v1xi(x,t)f1(t)Zcvf2(tvxf2(t-)v(35)其中,f1、f2由边界条件确定。从这个解的形式,我们可归纳如下几点物理概念:1)f-x、表示前行电压波,沿x的正方向传播;f1(L)vf2(tx)表示反行电压波,沿x的负方向传播。v2)前行波、反行波在无损导线中传播时不发生畸变和衰减。3)前行电压波ui伴随一个前行电流波h,它们之间关系?Zc(36)反行电压波u2伴随一个前行电流波i2,它们之间关系生乙(37)注意:负号是由于反行电流波方向与电流参考方向相反123- 4)无论对于前行波或反行波,电压波与电流波的比值在数量上等于|Zc|,但对于线路
21、上某点的电压和电流由前、反行波合成时却不存在这个关系,即u(x,t)i(x,t)Zc(38)2无损单长线的贝杰龙模型这里针对无损单长线,介绍如何将分布参数的输电线路化为集中参数计算模型,因为该方法出自于贝杰龙数学模型,所以又称为贝杰龙法。ikm(t)imk(t)k:.mlvZuk(t)um(t)图3-2长度、波速、波阻抗分别为l、v、Z的单长线如图所示的无损长线,两端节点分别为k、m,由(3-5)式得u(x,t)Zi(x,t)2f1(tx)v(39)vu(x,t)Zi(x,t)2f2(t-)vx一xx一x上式表明,当t和t各为固定值时,f1(t)和f2(t)也各为固定值,进而vvvvu(x,t
22、)+Zi(x,t)u(x,t)-Zi(x,t)也各为固定值。其含义是:若观察者沿x以速度v移动,则在他所在位置观测到的u(x,t)Zi(x,t)对该观察者而言分别始终不变。设=l/v,假如观察者在t-c时刻从k点出发,在t时刻到达m点,根据上述推理并结合考虑(3-9)式,有uk(t)Zkm(t)um(t)Zimk(t)将上式改写为.,、1Imk(t)-Um(t)Im(t)Z1(310)其中Im(t)(zUk(t)Ikm(t)同理可得1Ikm(t)-Uk(t)顷)Z1(311)其中Ik(t)-Um(t)Imk(t)式(3-10)、(3-11)有如下等效电路模型图3-3贝杰龙模型的等效电路由贝杰龙
23、模型的数学表达式(3-10)、(3-11)及其等效电路图3-3可总结其特点:1)k和m是一个线路元件的两端节点,在计算时可按两个分离节点计算;2)无损单长线的贝杰龙模型由两个分开的诺顿等效电路构成,其中诺顿等效电阻值等于线路波阻抗,诺顿等效电流源由另一端前c时刻的电压、电流值确定,从数值角度看,对当前计算步长而言,电流源是已知的。第四章多导线系统中的暂态过程计算本章主要针对三相架空输电线路。1三相输电线路微分方程的矩阵形式图4-1为对称三相输电线路一个dx长度元的等值电路。图4-1三相线路的一个长度元注意:图中的相间电容K在以下均表示为Co省略与单相长线方程一样的推导过程,我们直接得出方程的矩
24、阵形式RiGuL0tC0t(41)其中,变量的列向量UA(X,t)iA(x,t)UB(X,t)Uc(X,t)TiB(x,t)ic(x,t)T参数矩阵RaaRabRacRRbaRbbRbcRCARcbRccLaaLABLACLLBALbbLBCLcaLcbLCCCaoCabCacCabCacRCABCB0CABCBCCBCCacCbcCcoCacGaoGabGACGabgGGabGboGabGbcgGACGbcGcoGa零初始条件下(4-1)的象函数矩阵形式为dU(x,S)Z(S)I(x,S)0dxdI(x,S)(42)Y(S)U(x,S)0BC进一步对x求导得CBCBCGbcd2U邛ZYUPU
25、(43)dx2旦YZIPTIdx2p=pt。一般情况下,P冲T,但如果Z、Y方阵为平衡阵,则注:所谓“平衡”方阵就是所有对角元素相等、所有非对角元素也相等的方阵。例如三相全换位线路的Z、Y就可视为平衡阵。2多导线系统的相-模变换一、问题的提出(4-2)、(4-3)与单导线微分方程形式类似,但方程中的变量为向量、系数是矩阵。由于系数矩阵中有非对角元素,解某一相要受到其它相的牵连,所以直接解方程是十分困难的,如果我们借助于相似变换将矩阵中的非对角元素化为零,则矩阵方程组中的每个方程只有一个电压、电流,方程形式与单导线微分方程完全相同,解答方法与前述的一样。设Um、Im表示变换后的电压、电流向量(称
26、为模量),即U=TuUmI=TiIm其中Tu、Ti分别为电压、电流的变换矩阵。将(4-3)式用模量表示d2Um1dTuPTuUm也T1PTTI2iimdx对于三相全换位系统,P为平衡阵,P=PT,所以Tu=Ti=T,变量的变换矩阵是相同的。(44)、变换矩阵T根据矩阵理论中的相似变换基本定理,略去烦琐的推导过程,直接得非正交变换矩阵120Q11111122211Q12116033正交变换矩阵变换后各模量功率之和不等于变换前各相量功率之和21_21一203一2-3一2变换后各模量功率之和等于变换前各相量功率之和1T1230无论是非正交变换矩阵概念的理解,T用于实际的数值计算。Q或正交变换矩阵T,
27、均可用于相模变换的计算。但实际上,Q一般用于物理三、各模的物理意义三相系统的相-模变换又称a、$0变换(ABC?a。0)。用变换矩阵Q来写电流的相-模变换,有Im1222IaImIm2Q1I-211Ib6Im3033Ic进一步写成单个方程形式11m13(IaIbIc)1m26(2IaIbIc)1m32(IbIc)第一个模分量是以大地为回路的“地中模量”,这一分量的波的传播与大地有关,是a0系统中的0模,可简称为“地模”;第二、三个模分量是以线间为回路的“空间模量”,这两分量的波的传播与大地无关,是a0系统中的济、6模,可简称为“线模”;模分量的构成如图4-2所示。0模分量a模分量6模分量四、相
28、-模变换与对称分量参数图4-2也、6、0模分量由于1TZT1-131201ZsZmZm111?232ZmZsZm2121,3ZMZMZs032一22Zs2Zm000ZsZm000ZsZm那么对(4-2)中的第一式(第二式方法相同,后不重复叙述)进行相-模变换,有dUmdx写成三个独立的模量方程dUm0dxdUmdxdUmdx(Zs2ZM)Im00(ZsZm)、0(ZsZM)Im0(45)既然Zs、Zm分别为三相对称线路的自阻抗和互阻抗,且有零序阻抗Zzero=Zs+2ZM=Z0正序阻抗Zpos=Zs-ZM=Z1所以,地模分量方程是由零序参数确定的微分方程,线模分量方程是由正序参数确定的微分方程
29、。这与我们所熟悉的对称分量法十分相似,只是对称分量法用于单频复域的相量值稳态计算,而相-模变换用于时域的瞬时值暂态计算。五、三相输电线路方程的通解Z0Y000由于TPT10ZiYi000ZiYiPm所以由(4-4)得dUm0(xS)(2-Z0Y°Um°(x,S)0dx2dU2m(x,S)*)乙YiUm(x,S)0dx2dU2m(x,S)-2-乙YiUm(x,S)0dx上述模量方程的通解为(46)Um°(x,S)FZ°Y°xFm0ieF小Z0Y°xFm02eUm(x,S)ZiYixFmieFm2eZiYixUm(x,S)ZiYixFmi
30、eFm2eZiYix将上式写成矩阵形式UmFmiexFm2ex这样,三相线路在ABC坐标中的电压通解为(47)UTUmTFmiexTFm2ex(48)同理,可求得电流的通解为ITIrnTZiFmi6?xTZFm2ex(49)其中,模波阻抗为乙00.Z°Y000Z0Z00ZiYi000Z00ZiYi当线路为无损线路时乙L°C°由单位长度零序电感、电容确定LiCi由单位长度正序电感、电容确定六、n阶正交变换矩阵的一般形式相-模变换可推广到任意N相多导线系统,其变换矩阵的通用式为1111N-2一6J(J1)1111N26.J(J1)11-N-060TJ1J(J1)0N(
31、N1)1N(N1)_1_NN(N1)当N=3时,31313T1一21一216161"6这似乎与前面得到的变换矩阵不同,但如果将AB-C相序换作C-BA、将0a6模量顺序换作0-(-6)(-a),则变换矩阵就一样了。这再次说明相-模变换矩阵不是唯一的,其原因在于:在将实对称矩阵P转化为与其相似的对角矩阵入时,特征方程detP-入=0有重根。另外,当N=2时,1_122T2'2适用于长距离直流线路的暂态计算。_1_1_224-3三相系统计算中的贝杰龙法在这一节里,针对无损三相线路,推导出其贝杰龙数值模型。设无损三相线路的两端分别为s、r,由单相贝杰龙模型表达式(3-10)、(3-
32、11)直接得到三相系统中的模量方程将上两式用简洁方式表小isr.mirs.m变换到ABC'sr(t)irs(t)Y Zmus.m(t)Nur.m(t)系统得TZ1TU(t)*Us(t)*Ur(t)s.m(tr.m(tm)m)_*其中,YT/T1显然,三相全换位无损线的TITITIs.ms.m(tr.m(t(tm)m)m)(48)121111Z0L乙L乙z111211Z0z乙z乙z111112Z0z乙zz13*HY*是一个平衡矩阵,其对角元素相等,非对角元素也相等,即i0r(t)1Zo00u0(t)I0(t0)isr(t)01Zi0Us(t)Is(t1)isr(t)001zus(t)Is
33、(t1)I0(t0)1Z0000ur(t0)i:s(t0)其中Is(t1)01z0ur(t1)irs(t1)Is(ti)001zur(t1)irs(t1)i:s(t)1Z000u;(t)I0(t0)irs(t)01Z0ur(t)Ir(t1)irs(t)001zur(t)Ir(t1)I0(t0)1Z000u0(t0)i°r(t0)其中Ir(t1)01Z0us(t1)isr(t1)Ir(ti)001zus(t1)isr(t1)1*Yiiy22y33-Co3Lo21'Li*yi2y2iyi3y3iy23*iy32二3CiLi仿照单相贝杰龙模型,将三相贝杰龙模型表达式(Co:Lo4-
34、8)用如图4-3所示等效电路表示yAsAABycAyBCABBCyBCCCIr.在等效电路中,各导纳参数YaYbYc图4-3三相线路贝杰龙模型的等效电路*Yl1*Yi2*Yi3、全等于。模波阻抗的倒数LoyabyBCyCA*Yi21CiCo3LiLo而等效电流源IAsI:(to)IBsTIs(ti)ICsIs(ti)IArio(to)IBrTIr(ti)ICrIr(ti)第五章电力系统物理模拟的理论和方法电力系统的物理模拟是用相应的电气设备作为模型来对实际系统原型进行仿真。在物理模拟中,模型与原型的区别只是大小比例的不同,而所进行过程的物理本质是完全相同的。如实际系统中的电感必须用电感实物元件
35、来模拟、电容用电容来模拟等。物理模拟技术是建立在物理现象相似理论基础上的。§5.1物理模拟的建模依据5.1.1相似第一定理定理:相似系统有同样的相似判据,即相似指标等于1。什么是相似判据和相似指标呢?由于相似第一定理是由牛顿创立的,我们不妨以两个相似的最简单的动力学系统为例进行研究,其中一个系统为原型,另一个系统为仿真模型。根据牛顿第二定律,两个系统的物理本质为第1个系统:(51)d2liFiMi2"dt2第2个系统:F2M2-dt2(52)如果要是这两个系统相似,则两个系统的对应变量和参数在整个动态过程中应分别保持一个固定的比例值(乂称模拟比),即F1F2"m2
36、mMliI2mitit2mt代入(5-1)式得F2mFM2mMd2l2dt2mi2mtmMml2mt,d2l2M2定mMmlmF将上式与(5-2)式比较,得2mt(53)mMml2mtmF式(5-3)等号左边的表达式称为动力学系统的相似虹艮明显相似指标表示系统各物理量模拟比的关系。将各物理量模拟比表达式代入(5-3)式,得MAMAFEF2t2这个无量纲等式就是这个简单动力学系统的相似判据。等号两边由原型系统或模拟系统的物理量构成的关系表达式为相似判据表达式,一般用兀表示,式(5-1)或(5-2)表征的简单动力学系统的判据表达式为Ft2idem(54)式中,idem为“相同”的意思,表示两个或多
37、个系统的物理过程(现象)相同。=idem相似判据表达式的特点是无量纲,但乂说明了系统中各参与的物理量问应保持的某种固定关系。很显然,对丁复杂的动力学系统,数学描述方程为多项式,相应的相似定理也可推论如下:有多个相似判据兀1,兀2,Ttk,Ttn。且相似系统的所有兀都分别满足兀存在相似变换的运算法则idemidemidemidem5.1.2相似第二定理兀定理定理:假设任意物理系统是由n个量纲不同的物理量所组成,物理过程的关系由如下方程式决定F(X1,X2,xn)=0若上式n个物理量中有K(K<n)个是互相独立的,如选出相互独立的K个物理量作为基本量,则另外n-K个物理量与选定的基本量所组成
38、的n-K个无量纲的比例数兀1,兀2,兀口土可以用算式完全地表达出来,而这些无量纲的比例数兀就是相似判据。兀定理指出如何利用量纲分析法找到描述一个物理现象的相似判据的个数,并确定这些判据的表达式。对丁力学系统而言,所有的力学量都是由长度l、质量M、时问t这三个基本量组成,如果用表示物理量的量纲,则任何物理量Q的量纲都可写成Q=l"M°F式中a、6、丫为量纲指数。举两个简单例子来帮助理解兀定理是很有必要的例1:物理过程的关系为牛顿第二定律dt2参与的物理量为F、l、M、t四个,其中选取l、M、t三个相互独立的物理量为基本量,则F=Mlt-2进而蚂,即相似判据个数为1。Ft2假如
39、选取长度l、速度v、密度p为基本量,则有M=pl3t=lv-1进而F=pl2v2,可见,基本量选取的个数是唯一的,但物理性质不唯一,只要相互独立即可。这一点能够增强复杂系统物理模拟时的建模灵活性。例2:物理过程的关系为运动方程lVot1at22参与的物理量为l、v、a、t四个,其中独立数为2,选取l、t为基本量,不难得出有1了、2两个相似判据。由上分析可推断,应用基丁兀定理的量纲分析法,即使不知道所研究过程的数学方程式,我们也可导出相似判据。5.1.2相似第三定理定理:如果两个现象的单值条件相似,并且从单值条件引出的相似判据数值相等,那么这两个现象相似。所谓单值条件是指一个现象从一群现象中区别
40、出来时所需要的条件。模拟电力系统时主要包括下列几个因素:(1)几何相似。如果物理过程是在一个有限的、具有确定形状和大小的空间之内进行的,则在几何相似的系统中任何相应点的坐标应满足模拟比limll2对丁模拟具有集中参数的系统,则可以不要求几何相似。(2)物理参数相似。系统原型的物理参数(主要为电阻R、电感L、电容C)与模型中相应的物理参数应该分别满足RimRLiR2L2C2(3)状态变量及其起始条件相似物理过程一方面取决丁过程的性质,另一方面也取决于起始条件。两个相似系统的相应起始条件之间的比例应该等丁该物理量的模拟比。如电压、电流应满足g生mvV20v金mjI20I2(4)边界条件相似。所研究
41、的任何一个现象都有其活动范围,在边界上可能有别的现象存在,这些现象本身并不依赖丁被研究的现象,但却对其有影响,这样就不能只依靠被研究现象的特性来判断各变量问的相互作用,而必须同时考虑边界上所进行的所有现象,即相应时刻、相应边界点上的干扰因数应保持一定的比例系数。(5)时间相似。在随时间变化的过程里(包括暂态过渡过程),每一时刻都对应着各物理量的一系列确定的数值。为了使物理量在模型中t2时刻的值与在原型中tl时刻的值相似,需保持时间模拟比固定不变。即t1mtt2当mt=1时,模型对原型的模拟为实时模拟,否则为时谐模拟。即(55)m:1*§5.2基尔霍夫系统相似判据与物理模拟比的确定方法
42、模拟必须以相似判据为依据,求得相似判据就等丁得出相似指标,也就决定了物理模拟比的选择条件确定相似判据的方法有两种:一为基丁相似第二定理(兀定理)的量纲分析法,它适用丁包括特性方程无法得知的所有系统;二是基丁相似第三定理的分析方程式法(主要是标幺值相等法),它适用丁特性方程已知系统。以下综合两种方法推导相似判据:(56)任意满足基尔霍夫定律的系统,其特性均可表示为F(R,L,C,v,i,t)0式中R,L,C,v,i,t分别表示电阻、电感、电容、电压、电流和时间。从更广泛的动力学系统角度考虑,由丁长度I、质量M、时间t为三个基本量且R、L、C的物质届性与I、M有关,所以上述基尔霍夫表达式可写成(5
43、7)F(R,L,C,v,i,t,I,M)0不妨暂且称式(5-7)为广义基尔霍夫系统。首先的问题是,上式有几个独立物理量?为对此求解,我们可利用系统或其中各部分所遵循的物理定律和物理参数定义表达式结合量纲分析法来推断。在式(5-7)的8个物理量中,除了M、I、t外,暂时假设电气量i也为基本量,贝U由库仑定律q1q20F122214r并考虑到力F的量纲式F=Mlt-2和i=dq/dt得出量纲平衡式C=M-12t4i2(5-8)进一步由电容定义C=q/v得112工-3.-11v=Mlti同样,由安培力定律(5-9)%八尸(i2dl2r0)rii一ri/i112.-2-2-|L=Mlti乂根据线电荷分
44、布导体的焦耳定律(5-10)F?dl2dldt中中,p为电阻率,a为线电流密度。即得出电阻R量纲式rciria1|2j_-3.-2R=Mlti(5-11)由(5-8)、(5-9)、(5-10)、(5-11)可列出C、V、L、R的量纲指数矩阵A1111222243232122用行列式行变换的方法容易得出行歹0式的秩=3由此得出结论:所有满足基尔霍夫定律的电力系统,其独立的物理量数为3个。这一点与前述牛顿力学系统相同,证实了电力系统届丁动力学系统一个子集的基本概念。接下来继续推导相似判据的个数和形式。系统的电气特性是由式(5-6)描述的,如果在该式的6个物理量中选取3个作为基本量(这意味着广义系统
45、中的M、l不作为基本量),根据兀定理,相似判据的个数等丁3。按照电路基础理论,不论多么复杂的基尔霍夫系统都是由R、L、C构成的,并且式(5-6)可由R、L、C元件的欧姆定律表达式复合而成。因此基尔霍夫系统的基本表达式为RidiL-dtC业dt这样,系统的3个相似判据为1 Riv2 LivtCv(512)相应丁物理模拟比的相似指标为mRmimvmmmvmtmmmm(513)上式为模型对原型的时谐性仿真条件。特别地,当模型为实时性时,mz=mR,贝U有mt=1并令阻抗模拟比mzmi1mu1mRmzmLmzme一mz(514)§5.3机电过程及同步发电机模型有效性的定性分析电力系统动态模型
46、(动模)是根据相似定理建立的物理仿真系统,由丁它能再现电力系统中的各种运行状况,因此长期以来一直是电力系统科研和教学活动的必备工具。虽然理论上动模适合丁模拟包括机电过程和电磁过程在内的电力系统各种现象,但由丁物理建模的经济性和模型试验的灵活性等方面的原因,实际上动模一般只应用丁以系统功率(能量)变化为对象的机电过程的仿真研究,且主要的特征观测量为符合工频周期变化的频域相量。既然同步发电机几乎可以说是电力系统的唯一电源,而且它的机械动力学运动状况决定了系统的功率变化规律,所以同步发电机模型是整个动模仿真系统的建模关键。物理建模的出发点是以小容量、低电压的电气元件来对大容量、高电压的同类实物元件进
47、行模拟,按照上一节对广义基尔霍夫系统相似判据的推论(基本物理量的个数为3),这意味着动模元件模型的电气变量电压v和电流i以及时问t的模拟比mv、mi、mt(实时模型mt=1)必须首先固定,而模型元件的几何尺寸及材料特性则需要在模型制作时符合非独立电气参数模拟比的要求。根据IEEE或IEC标准,描述同步发电机的运行特性需要的电气参数如表5-1所示。表5-1同步发电机电气参数电气参数符号电枢电阻Ra电枢漏电抗X1零序电抗X0暂态电抗X'dX,q次暂态电抗X”dX”q暂态短路时间常数dq次暂态短路时间常数T”dT”q惯性时间常数Tj表5-1中的参数通常用丁电机运行的理论分析,它们是由电机的原
48、始电气参数转换而来的,物理仿真模型分析应该直接依靠如表5-2所示的电机实物原始电气参数。表5-2同步发电机实物原始电气参数电气参数符号电枢反应电抗XadXaq定子绕组漏抗Xs=Xd-Xad励磁绕组电抗Xf阻尼绕组漏抗XydXyq定子绕组电阻r励磁绕组电阻rf阻尼绕组电阻rydyq惯性时间常数Tj一旦动模仿真系统的电压、电流对实际系统原型的模拟比确定后,阻抗基准值的模拟比随之确定,根据相似第三定理,模型与原型的表5-2中的电气参数标幺值应该相等(实时模型的Tj有名值相等)。构建物理模型时,出丁经济性和轻便性考虑,人们在设计模拟比时总是希望用尽可能小容量、尽可能低电压的模型来模拟尽可能大容量、尽可
49、能高电压的真实系统。这种设想对丁绝大多数无机械运动的元件模型是较容易实现的,但对丁诸如同步发电机类的旋转电气设备却受到材料性质和几何尺寸等因数限制,主要问题是小型模型电机阻抗基准值的模拟比要比容量(功率)模拟比小很多,致使电机绕组在保证电抗标幺值相等(模型电机绕组线圈的匝数不能太少和导线长度不能太短)的条件下电阻标幺值比实际大型电机大得多,同时模型电机惯性时间常数必须与原型相等,这个要求从几何尺寸方面限制了通过增大绕组导线截面积降低电阻的尝试效果。阐述如下:不同容量发电机惯性时间常数与转子质量-尺寸的关系为2.74GD2n21000S(515)式中,GD2转动惯量(吨米2,决定了电机几何尺寸)
50、Tj惯性时间常数(秒)n转速(转/分)S容量(kVA)。在实时(mt=1)条件下,模型与原型的Tj、n相等,因此模型机几何尺寸与容量模拟比的关系由(5-15)得GD2MSigd2mS1mS(516)电机的电枢反应电抗为(Nk1)22DleqN2k(517)式中,D极距leq-一电枢轴向计算长度N绕组匝数a气隙ks气隙系数,定转子开槽等效丁增大气隙绕组电阻与导线长度成正比、与导线截面积成反比。而导线的截面积越大,定转子表面开槽就越大,等效气隙kaa也就越大;导线长度是随着绕组匝数N的增加而增加的,故模型机绕组的电阻可写成模型对原型的阻抗基准值模拟比为mZB-72ZB1mvZB2mS(519)从式
51、(5-16)、(5-20)、(5-18)和(5-19)可见,当减小模型机容量(增大容量模拟比ms)时,电机尺寸GD2要大幅减小,极距D和电枢轴长leq随之减小;由丁阻抗基准值模拟比的变化相对较小,意味着电枢感抗X与原型机差别不大,也就是说必须用细导线制作定转子绕组保证足够匝数N,并且还必须尽量减小等效气隙kaa以使模型机在Dleq大幅减小的情况下X值仍然能够满足标幺值与原型机相等。很明显,为参数X满足要求所采取的措施(增加M减小kaa)增大了电阻R及其标幺值;并且模型机容量S越小(mS越大),X越难满足要求,同时R的标幺值可能大得难以接受。综上所述可推论,在用小型同步发电机模拟大型机时,模型机的容量选取值不能太小,否则试验结果严重失真。另外,即使X标幺值与实际一致,由丁R标幺值比实际机组高出许多倍,在模拟机端突然短路现象时,实际大型机组的转子是立即发生加速,而小型模型机则先产生制动然后再加速;短路电流的衰减也是模型机比原型机快得多。进一步推论,同步发电机模型的容量(功率)要求决定了整个动态模型仿真系统所有其元电气元件模型的容量(功率)都不能太小。§5.4电磁暂态过程及TNA电网模型简化等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年在线教育运营合同
- 2025年公司融资投资人增资协议
- 2025年代理合作签约协议
- 二零二五年度婴幼儿奶粉产品追溯系统建设合作协议3篇
- 2025年项目建议书编制委托人工智能+大数据合同模板2篇
- 2025年度健康养生产品居间营销合同模板4篇
- 跟着2025年新番走:《动漫欣赏》课件带你领略动漫魅力2篇
- 2025年度智能牧场羊代放牧与物联网服务合同
- 二零二五年度简易解聘并购交易合同
- 二零二五年度物业管理人员人工费及团队建设合同
- 反骚扰政策程序
- 运动技能学习与控制课件第十一章运动技能的练习
- 射频在疼痛治疗中的应用
- 四年级数学竖式计算100道文档
- “新零售”模式下生鲜电商的营销策略研究-以盒马鲜生为例
- 项痹病辨证施护
- 职业安全健康工作总结(2篇)
- 怀化市数字经济产业发展概况及未来投资可行性研究报告
- 07FD02 防空地下室电气设备安装
- 教师高中化学大单元教学培训心得体会
- 弹簧分离问题经典题目
评论
0/150
提交评论