版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.2 矩形的性质与判定 第1课时 矩形的性质两组对边两组对边分别平行分别平行平行平行四边形四边形四边形四边形平行四边形的性质有:平行四边形的性质有:边:边:对边平行且相等对边平行且相等角:角:对角相等;邻角互补对角相等;邻角互补 对角线:对角线:对角线互相平分对角线互相平分回忆回忆平行四边形是中心对称图形平行四边形是中心对称图形. .有一个角是直角的平行四边有一个角是直角的平行四边形叫做矩形形叫做矩形. .四边形四边形两组对边两组对边分别平行分别平行 平行平行四边形四边形一个角一个角是直角是直角矩形矩形矩形的定义:矩形的定义:DCBA矩形是轴对称图形矩形是轴对称图形吗?如果是,那么吗?如果是
2、,那么有几条对称轴?有几条对称轴?轴对称图形轴对称图形一、矩形与平形四边形之间的关系一、矩形与平形四边形之间的关系平行四边形平行四边形矩形矩形即:矩形是一种特殊的平行四边形即:矩形是一种特殊的平行四边形 矩形还有哪些特殊性质?矩形还有哪些特殊性质?矩形有哪些性质?矩形有哪些性质?具有平行四边形的所有性质具有平行四边形的所有性质边:矩形的边:矩形的对边平行且相等对边平行且相等角:矩形角:矩形对角相等;邻角互补对角相等;邻角互补对角线:矩形对角线:矩形对角线互相平分对角线互相平分猜想猜想1 1、矩形的四个角都是直角、矩形的四个角都是直角矩形的特殊性质:矩形的特殊性质:性质性质1 1、矩形的四个角都
3、是直角、矩形的四个角都是直角A AB BC CD D已知:如图,矩形已知:如图,矩形ABCD.ADBC AC=BD.四边形四边形ABCD是矩形是矩形,证明:证明: ABC= DCB,AB=CD. ABC DCB(SAS)在在ABC和和DCB中中,AB=DCABC= DCBBC=CB求证:求证:AC=BD. 2: 矩形的对角线相等矩形的特殊性质矩形的特殊性质性质性质1 1、矩形的四个角都是直角、矩形的四个角都是直角性质性质2 2、矩形的两条对角线相等、矩形的两条对角线相等几何语言几何语言: :四边形四边形ABCDABCD是矩形是矩形 AC = BDAC = BDA=B=C=D=90A=B=C=D
4、=90矩形的性质矩形的性质边的性质:边的性质: 矩形的对边平行且相等矩形的对边平行且相等. . 角的性质:角的性质: 矩形的矩形的四个角都是直角四个角都是直角. .对角线的性质:对角线的性质: 矩形的对角线矩形的对角线相等,相等,且互相平分且互相平分. .1.1.矩形具有而一般平行四边形不具有的性质是矩形具有而一般平行四边形不具有的性质是( ) A.A.对角线相等对角线相等 B.B.对边相等对边相等 C.C.对角相等对角相等 D.D.对角线互相平分对角线互相平分2.2.下面性质中,矩形不一定具有的是(下面性质中,矩形不一定具有的是( ) A.A.对角线相等对角线相等 B.B.四个角相等四个角相
5、等 C.C.是轴对称图形是轴对称图形 D.D.对角线互相垂直对角线互相垂直AD练习:练习:3 3、如图,在矩形、如图,在矩形ABCDABCD中,中,ACAC与与BDBD相交于点相交于点O O,AB=3cmAB=3cm,BC=4cm BC=4cm 则则AC=AC= cmcm,BO=BO= cmcm,矩形的周长为矩形的周长为 cm,cm,矩形的面积为矩形的面积为 cmcm2 2OADCB5 52.5 2.5 14141212矩形的两条边和对角线构成矩形的两条边和对角线构成一个一个 三角形,三角形, 是是斜边斜边.求矩形的边长和对角线的问求矩形的边长和对角线的问题可转化为直角三角形,利题可转化为直角
6、三角形,利用用 解决解决.直角直角对角线对角线勾股定理勾股定理ABCDE 如图,设矩形的对角线如图,设矩形的对角线AC与与BD相交相交 于点于点E,那么,那么BE是是RtABC中的一条怎样的中的一条怎样的特殊线特殊线段段?它与?它与AC有什么大小关系?为什么?有什么大小关系?为什么? 推论:直角三角形斜边上的中线等于斜边推论:直角三角形斜边上的中线等于斜边的一半的一半BADC1. 已知:如左图,矩形已知:如左图,矩形ABCD的两条对角线相交的两条对角线相交于点于点O,AOD=120,AB=4cm,求矩形对角线求矩形对角线的长的长.O解:四边形ABCD是矩形,AC=BD(矩形的对角线相等).又O
7、A=OC= AC, OB=OD= BD,2121OA=OD, AOD=120, ODA= OAD= =30,2120180oo又 DAB=90(矩形的四个角都是直角).BD=2AB=24=8 ( cm ) .2.在矩形在矩形ABCD中中,两条对角线两条对角线AC、BD相交于点相交于点O, AOB= 60,AB=3cm。请判定。请判定AOB的形的形状,并求出对角线的长。状,并求出对角线的长。ABCDOAOB等边三角形等边三角形对角线的长是对角线的长是6cm 3.已知平行四边形已知平行四边形ABCDABCD的对角线的对角线ACAC和和BDBD相交于点相交于点O O,AOBAOB是等边三角是等边三角形,形,ABAB 4 cm4 cm求这个平行四边形求这个平行四边形的面积的面积. . (分小组交流结果)(分小组交流结果)答案:答案:2316cm(1) AB=CD(2) AD=BC(3) AB=BC(4) ABCD(5) AD BC(6) BAD=BCD(7) ABC=ADC(8) BAD=90。(9) OA=OC(10) OB=OD(11) ACBD(12) AC=BD边边角角对角线 4.你能在四边形的基础上你能在四边形的基础上,从下列条件中选从下列条件中选三三个个,得到得到
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度版权购买合同:漫画作品版权收购2篇
- 留守儿童帮扶计划
- 班组管理经验交流心得体会
- 2024年品牌授权使用合同(精简版)3篇
- 教育的目的读书心得体会
- 中学学生会工作职责
- 2024年定制欧派品牌厨房橱柜购销协议版B版
- 大学教师科研工作计划
- 养老护理员培训大纲及计划
- 2024年安置房销售简易合同3篇
- 广东省广州市2023-2024学年六年级上学期数学期中考试卷(含答案)
- 2024-2030年中国羽毛球拍行业市场发展趋势与前景展望战略研究报告
- 2024电力建设土建工程施工技术检验规范
- 中式烹调技术课件
- 高中数学大单元教学设计研究
- 10kV供配电系统电气设备改造投标方案(技术方案)
- 江苏省2024年中考数学试卷九套合卷【附答案】
- 山东教育出版社初中美术 七年级上册第二单元 读书、爱书的情结 单元教学设计
- 2024年建投集团公开招聘工作人员高频500题难、易错点模拟试题附带答案详解
- 2024秋期国家开放大学专科《毛泽东思想和中国特色社会主义理论体系概论》一平台在线形考(专题检测一)试题及答案
- RhD抗原阴性孕产妇血液安全管理专家共识
评论
0/150
提交评论