版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆、扇形、弓形的面积(一)教学目标:1、掌握扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算;2、通过扇形面积公式的推导,培养学生抽象、理解、概括、归纳能力和迁移能力;3、在扇形面积公式的推导和例题教学过程中,渗透“从特殊到一般,再由一般到特殊”的辩证思想教学重点:扇形面积公式的导出及应用教学难点:对图形的分析教学活动设计:(一)复习(圆面积)已知O半径为R,O的面积S是多少?S=R2我们在求面积时往往只需要求出圆的一部分面积,如图中阴影图形的面积为了更好研究这样的图形引出一个概念扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形提出新问题:已知O半径为R,求圆心角n
2、176;的扇形的面积(二)迁移方法、探究新问题、归纳结论1、迁移方法教师引导学生迁移推导弧长公式的方法步骤:(1)圆周长C=2R;(2)1°圆心角所对弧长= ;(3)n°圆心角所对的弧长是1°圆心角所对的弧长的n倍;(4)n°圆心角所对弧长= 归纳结论:若设O半径为R, n°圆心角所对弧长l,则 (弧长公式)2、探究新问题教师组织学生对比研究:(1)圆面积S=R2;(2)圆心角为1°的扇形的面积= ;(3)圆心角为n°的扇形的面积是圆心角为1°的扇形的面积n倍;(4)圆心角为n°的扇形的面积
3、= 归纳结论:若设O半径为R,圆心角为n°的扇形的面积S扇形,则S扇形= (扇形面积公式)(三)理解公式教师引导学生理解:(1)在应用扇形的面积公式S扇形= 进行计算时,要注意公式中n的意义n表示1°圆心角的倍数,它是不带单位的;(2)公式可以理解记忆(即按照上面推导过程记忆);提出问题:扇形的面积公式与弧长公式有联系吗?(教师组织学生探讨)S扇形= lR想一想:这个公式与什么公式类似?(教师引导学生进行,或小组协作研究)与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了这样对比,帮助学生记忆公式实际上,把扇形的弧分得越来越小,作经过各分点
4、的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限要让学生在理解的基础上记住公式(四)应用练习:1、已知扇形的圆心角为120°,半径为2,则这个扇形的面积,S扇=_2、已知扇形面积为 ,圆心角为120°,则这个扇形的半径R=_3、已知半径为2的扇形,面积为 ,则它的圆心角的度数=_4、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积,S扇=_5、已知半径为2的扇形,面积为 ,则这个扇形的弧长=_( ,2,120°, , )例1、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积学生独立完成,对基础较差的学生教师指导(1)怎样求圆环的面积?(2)如果设外接圆的半径为R,内切圆的半径为r, R、r与已知边长a有什么联系?解:设正三角形的外接圆、内切圆的半径分别为R,r,面积为S1、S2S= ,S= 说明:要注意整体代入对于教材中的例2,可以采用典型例题中第4题,充分让学生探究课堂练习:教材P181练习中2、4题(五)总结知识:扇形及扇
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025Ha居间合同求盘
- 2025原材料买卖合同
- 2025合资经营企业合作合同
- 课题申报参考:马克思恩格斯对“慈善资本化”的本质批判及其当代价值研究
- 科技驱动下的创业与职业发展新模式
- 2024年电子式金属、非金属试验机项目资金申请报告代可行性研究报告
- 数学课堂中的师生互动与思维能力培养
- 节能环保洗浴中心装修技术解析
- (2020年编辑)新版GSP零售药店质量管理手册
- 2025年沪科版选择性必修3化学上册阶段测试试卷含答案
- 电缆挤塑操作手册
- 浙江宁波鄞州区市级名校2025届中考生物全真模拟试卷含解析
- 2024-2025学年广东省深圳市南山区监测数学三年级第一学期期末学业水平测试试题含解析
- IATF16949基础知识培训教材
- 【MOOC】大学生创新创业知能训练与指导-西北农林科技大学 中国大学慕课MOOC答案
- 劳务派遣公司员工考核方案
- 基础生态学-7种内种间关系
- 2024年光伏农田出租合同范本
- 《阻燃材料与技术》课件 第3讲 阻燃基本理论
- 2024-2030年中国黄鳝市市场供需现状与营销渠道分析报告
- 新人教版九年级化学第三单元复习课件
评论
0/150
提交评论