高中数学《抛物线》练习题_第1页
高中数学《抛物线》练习题_第2页
高中数学《抛物线》练习题_第3页
高中数学《抛物线》练习题_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高中数学抛物线练习题一、选择题:1. (浙江)函数yax21的图象与直线yx相切,则a( )(A) (B) (C) (D)12. (上海)过抛物线的焦点作一条直线与抛物线相交于A、B两点,它们的横坐标之和等于5,则这样的直线( )A有且仅有一条 B有且仅有两条 C有无穷多条 D不存在3. 抛物线上一点的纵坐标为4,则点与抛物线焦点的距离为( )(A) 2(B) 3(C) 4(D) 54. (辽宁卷)已知双曲线的中心在原点,离心率为.若它的一条准线与抛物线的准线重合,则该双曲线与抛物线的交点到原点的距离是( )A2+BCD215 .(江苏卷)抛物线y=4上的一点M到焦点的距离为1,则点M的纵坐标

2、是( ) ( A ) ( B ) ( C ) ( D ) 06. (湖北卷)双曲线离心率为2,有一个焦点与抛物线的焦点重合,则mn的值为( )ABCD二、填空题:7顶点在原点,焦点在x轴上且通径长为6的抛物线方程是 .8若抛物线的焦点在x轴上,则m的值是 .9过(1,2)作直线与抛物线只有一个公共点,则该直线的斜率为 .10抛物线为一组斜率为2的平行弦的中点的轨迹方程是 .OABEFM三、解答题:11. (江西卷)如图,M是抛物线上y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB. (1)若M为定点,证明:直线EF的斜率为定值; (2)若M为动点,且EMF=90,求EMF的

3、重心G的轨迹 12. (上海)本题共有3个小题,第1小题满分4分, 第2小题满分6分, 第3小题满分6分. 已知抛物线y2=2px(p0)的焦点为F,A是抛物线上横坐标为4、且位于x轴上方的点,A到抛物线准线的距离等于5,过A作AB垂直于y轴,垂足为B,OB的中点为M. (1)求抛物线方程; (2)过M作MNFA, 垂足为N,求点N的坐标; (3)以M为圆心,MB为半径作圆M.当K(m,0)是x轴上一动点时,丫讨论直线AK与圆M的位置关系. 当m0)则直线MF的斜率为k,方程为由,消 解得(定值) 所以直线EF的斜率为定值(2)直线ME的方程为由得 同理可得设重心G(x, y),则有消去参数得

4、4. 解(1) 抛物线y2=2px的准线为x=-,于是4+=5, p=2. 抛物线方程为y2=4x. (2)点A是坐标是(4,4), 由题意得B(0,4),M(0,2), 又F(1,0), kFA=;MNFA, kMN=-, 则FA的方程为y=(x-1),MN的方程为y-2=-x,解方程组得x=,y=, N的坐标(,).(1) 由题意得, ,圆M.的圆心是点(0,2), 半径为2,当m=4时, 直线AK的方程为x=4,此时,直线AK与圆M相离.当m4时, 直线AK的方程为y=(x-m),即为4x-(4-m)y-4m=0,圆心M(0,2)到直线AK的距离d=,令d2,解得m1当m1时, AK与圆M相离; 当m=1时, AK与圆M相切; 当m1时, AK与圆M相交.8. 解:()两点到抛物线的准线的距离相等, 抛物线的准线是轴的平行线,依题意不同时为0上述条件等价于 上述条件等价于 即当且仅当时,经过抛物线的焦点。()设在轴上的截距为,依题意得的方程为;过点的直线方程可写为,所以满足方程 得 为抛物线上不同的两点等价于上述方程的判别式,即13.解:(I)设AOB的重心为G(x,y),A(x1,y1),B(x2,y2),则 (1)OAOB ,即,(2)又点A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论