点线面的垂直关系_第1页
点线面的垂直关系_第2页
点线面的垂直关系_第3页
点线面的垂直关系_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、空间中的垂直关系一要点精讲1线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那麽它也和这条斜线的射影垂直。推理示范: 。注意:三垂线指PA,PO,AO都垂直内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理 要考虑a的位置,并注意两定理交替使用。2线面垂直定义:如果一条直线l和一个平面相交,并且和平面内的任意一条直线都垂直,我们就说直线l和平面互相垂直其中直线l叫做平面的垂线

2、,平面叫做直线l的垂面,直线与平面的交点叫做垂足。直线l与平面垂直记作:l。直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。3面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。两平面垂直的判定定理:(线面垂直面面垂直)如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直。两平面垂直的性质定理:(面面垂直线面垂直)若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面。典型问题解题思路总结1通过典型问题掌握基本解题方法,

3、高考中立体几何解答题基本题型是:()证明空间线面平行或垂直;()求空间中线面的夹角或距离;()求几何体的侧面积及体积。证明空间线面平行或垂直需注意以下几点:由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。立体几何论证题的解答中,利用题设条件的性质适当添加辅助线(或面)是解题的常用方法之一。明确何时应用判定定理,何时应用性质定理,用定理时要先申明条件再由定理得出相应结论。垂直和平行涉及题目的解决方法须熟练掌握两类相互转化关系:1 平行转化:线线平行线面平行面面平行;2 垂直转化:线线垂直线面垂直面面垂直;每一垂直或平行的判定就是从某一垂直或平行开始转向另一垂直或平行最终达到目的。

4、例如:有两个平面垂直时,一般要用性质定理,在一个平面内作交线的垂线,使之转化为线面垂直,然后进一步转化为线线垂直。二典例解析题型1:线线垂直问题例1如图1所示,已知正方体ABCDA1B1C1D1中,E、F、G、H、L、M、N分别为A1D1,A1B1,BC,CD,DA,DE,CL的中点,求证:EFGF。题型2:线面垂直问题例2、如图,ABCDA1B1C1D1是正四棱柱,求证:BD平面ACC1A1。例3如图,直三棱柱ABCA1B1C1 中,AC BC 1,ACB 90°,AA1 ,D 是A1B1 中点(1)求证C1D 平面A1B ;(2)当点F 在BB1 上什么位置时,会使得AB1 平面

5、C1DF ?并证明你的结论。题型3:面面垂直问题例4如图,ABC 为正三角形,EC 平面ABC ,BD CE ,CE CA 2 BD ,M 是EA 的中点,求证:(1)DE DA ;(2)平面BDM 平面ECA ;(3)平面DEA 平面ECA。例5如图所示,正四棱柱ABCDA1B1C1D1中,底面边长为2,侧棱长为4.E,F分别为棱AB,BC的中点,EFBD=G。()求证:平面B1EF平面BDD1B1;()求点D1到平面B1EF的距离d;()求三棱锥B1EFD1的体积V。.题型4:射影问题例6如图,正方形所在平面,过作与垂直的平面分别交、于、K、,求证:、分别是点在直线和上的射影题型5:垂直的应用ABCDEFGH例7如图,在空间四边形中,、分别是边、的中点,对角线且它们所成的角为。求证:,求四边形的面积。题型6:课标创新题例8如图(1)所示,E、F分别为正方体的面ADD1A1、面BCC1B1的中心,则四边形BFD1E在该正方体的面上的射影可能是图(2)的 (要求:把可能的图的序号都填上)图(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论