高等数学下册(课堂PPT)_第1页
高等数学下册(课堂PPT)_第2页
高等数学下册(课堂PPT)_第3页
高等数学下册(课堂PPT)_第4页
高等数学下册(课堂PPT)_第5页
已阅读5页,还剩536页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、.1 多元微积分的概念、理论、方法是一元微多元微积分的概念、理论、方法是一元微积分中相应概念、理论、方法的推广和发展,积分中相应概念、理论、方法的推广和发展,它们既有相似之处(概念及处理问题的思想方它们既有相似之处(概念及处理问题的思想方法)又有许多本质的不同,要善于进行比较,法)又有许多本质的不同,要善于进行比较,既要认识到它们的共同点和相互联系,更要注既要认识到它们的共同点和相互联系,更要注意它们的区别,研究新情况和新问题,深刻理意它们的区别,研究新情况和新问题,深刻理解,融会贯通。解,融会贯通。 多元函数微分学多元函数微分学 在上册中,我们讨论的是一元函数微积分在上册中,我们讨论的是一元

2、函数微积分,但实际问题中常会遇到依赖于两个以上自变量,但实际问题中常会遇到依赖于两个以上自变量的函数的函数多元函数,也提出了多元微积分问题。多元函数,也提出了多元微积分问题。 .2重点重点 多元函数基本概念,偏导数,全微分,多元函数基本概念,偏导数,全微分,复合函数求导,隐函数求导,偏导数的几何复合函数求导,隐函数求导,偏导数的几何应用,多元函数极值。应用,多元函数极值。难点难点复合函数求导,多元函数极值。复合函数求导,多元函数极值。 函数的微分法从一元函数发展到函数的微分法从一元函数发展到 二元函数本质上要出现一些新东西,但二元函数本质上要出现一些新东西,但 从二元函数到二元以上函数则可以类

3、推,从二元函数到二元以上函数则可以类推, 因此这里基本上只讨论二元函数。因此这里基本上只讨论二元函数。.3(1)邻域)邻域 设设),(000yxP是是xoy平面上的一个点,平面上的一个点, 是某是某一正数,与点一正数,与点),(000yxP距离小于距离小于 的点的点),(yxP的全体,称为点的全体,称为点0P的的 邻域,记为邻域,记为),(0 PU, ),(0 PU |0PPP .)()(| ),(2020 yyxxyx 0P(2)区域)区域.)(的的内内点点为为则则称称,的的某某一一邻邻域域一一个个点点如如果果存存在在点点是是平平面面上上的的是是平平面面上上的的一一个个点点集集,设设EPEP

4、UPPE 一、多元函数的概念一、多元函数的概念.4.为开集则称的点都是内点,如果点集EE例如,例如,41),(221 yxyxE即为开集即为开集EP 的的边边界界点点为为),则则称称可可以以不不属属于于,也也本本身身可可以以属属于于的的点点(点点也也有有不不属属于于的的点点,于于的的任任一一个个邻邻域域内内既既有有属属如如果果点点EPEEPEEP的边界的边界的边界点的全体称为的边界点的全体称为 EE是连通的是连通的开集开集,则称,则称且该折线上的点都属于且该折线上的点都属于连结起来,连结起来,任何两点,都可用折线任何两点,都可用折线内内是开集如果对于是开集如果对于设设DDDDEP .5例如,例

5、如,.41| ),(22 yxyx开开区区域域连连同同它它的的边边界界一一起起称称为为闭闭区区域域.例如,例如,.41| ),(22 yxyxxyoxyo则则称称为为无无界界点点集集为为有有界界点点集集,否否成成立立,则则称称对对一一切切即即,不不超超过过间间的的距距离离与与某某一一定定点点,使使一一切切点点如如果果存存在在正正数数对对于于点点集集EEPKAPKAPAEPKE 连通的开集称为区域或开区域连通的开集称为区域或开区域.6 41 | ),(22 yxyx有界闭域;有界闭域;0| ),( yxyx无界开区域无界开区域(3)聚点)聚点 设设 E 是平面上的一个点集,是平面上的一个点集,P

6、 是平面上的是平面上的一个点,如果点一个点,如果点 P 的任何一个邻域内总有无限的任何一个邻域内总有无限多个点属于点集多个点属于点集 E,则称,则称 P 为为 E 的聚点的聚点.xyo.7 内点一定是聚点;内点一定是聚点; 边界点可能是聚点;边界点可能是聚点;例例10| ),(22 yxyx(0,0)既是边界点也是聚点既是边界点也是聚点 点集点集E的聚点可以属于的聚点可以属于E,也可以不属于,也可以不属于E例如例如,10| ),(22 yxyx(0,0) 是聚点但不属于集合是聚点但不属于集合例如例如,1| ),(22 yxyx边界上的点都是聚点也都属于集合边界上的点都是聚点也都属于集合.8(4

7、)n维空间维空间 设设n为取定的一个自然数,我们称为取定的一个自然数,我们称n元数组元数组),(21nxxx的全体为的全体为n维空间,而每个维空间,而每个n元数元数组组),(21nxxx称为称为n维空间中的一个点,数维空间中的一个点,数ix称为该点的第称为该点的第i个坐标个坐标. n维空间的记号为维空间的记号为;nR n维空间中两点间距离公式维空间中两点间距离公式 .9),(21nxxxP),(21nyyyQ.)()()(|2222211nnxyxyxyPQ 特殊地当特殊地当 时,便为数轴、平面、时,便为数轴、平面、空间两点间的距离空间两点间的距离3, 2, 1 n n维空间中邻域、区域等概念

8、维空间中邻域、区域等概念邻域:邻域: nRPPPPPU ,|),(00 内点、边界点、区域、聚点等概念也可定义内点、边界点、区域、聚点等概念也可定义设两点为设两点为.10(5)二元函数的定义)二元函数的定义类似地可定义三元及三元以上函数类似地可定义三元及三元以上函数当当2 n时时,n元元函函数数统统称称为为多多元元函函数数. 多多元元函函数数中中同同样样有有定定义义域域、值值域域、自自变变量量、因因变变量量等等概概念念.11例例1 1 求求 的定义域的定义域222)3arcsin(),(yxyxyxf 解解 013222yxyx 22242yxyx所求定义域为所求定义域为., 42| ),(2

9、22yxyxyxD .12(6) 二元函数二元函数 的图形的图形),(yxfz 设设函函数数),(yxfz 的的定定义义域域为为D,对对于于任任意意取取定定的的DyxP ),(,对对应应的的函函数数值值为为),(yxfz ,这这样样,以以x为为横横坐坐标标、y为为纵纵坐坐标标、z为为竖竖坐坐标标在在空空间间就就确确定定一一点点),(zyxM,当当x取取遍遍D上上一一切切点点时时,得得一一个个空空间间点点集集),(),(| ),(Dyxyxfzzyx ,这这个个点点集集称称为为二二元元函函数数的的图图形形.(如右图)(如右图)二元函数的图形通二元函数的图形通常是一张曲面常是一张曲面.13二、多元

10、函数的极限二、多元函数的极限.14(1)定义中)定义中 的方式可能是多种多样的方式可能是多种多样的,方向可能任意多,路径可以是千姿百态的,的,方向可能任意多,路径可以是千姿百态的,所谓极限存在是指当动点从四面八方以可能有所谓极限存在是指当动点从四面八方以可能有的任何方式和任何路径趋于定点时,函数都趋的任何方式和任何路径趋于定点时,函数都趋于同一常数。于同一常数。这是产生本质差异的根本原这是产生本质差异的根本原因。因。0PP (2)二元函数的极限也叫二重极限)二元函数的极限也叫二重极限);,(lim00yxfyyxx(3)二元函数的极限运算法则与一元函数类似)二元函数的极限运算法则与一元函数类似

11、如局部有界性、局部保号性、夹逼准则、无穷小、如局部有界性、局部保号性、夹逼准则、无穷小、等价无穷小代换等,建议自行复习,写出有关结论等价无穷小代换等,建议自行复习,写出有关结论以巩固和加深理解。以巩固和加深理解。说明:说明:.1501sin)(lim222200 yxyxyx证证01sin)(2222 yxyx22221sinyxyx 22yx , 0 , 当当 时,时, 22)0()0(0yx 01sin)(2222yxyx原结论成立原结论成立例例2 2 求证求证 .16例例3 3 求极限求极限 .)sin(lim22200yxyxyx 解解22200)sin(limyxyxyx ,)sin

12、(lim2222200yxyxyxyxyx 其中其中yxyxyx2200)sin(limyxu2 uuusinlim0, 1 222yxyx x21 , 00 x. 0)sin(lim22200 yxyxyx.17例例4 4 证明证明 不存在不存在 26300limyxyxyx 证证取取,3kxy 26300limyxyxyx 6263303limxkxkxxkxyx ,12kk 其值随其值随k的不同而变化,的不同而变化,故极限不存在故极限不存在.18确定极限确定极限不存在不存在的方法:的方法:(1) 令令),(yxP沿沿kxy 趋趋向向于于),(000yxP,若若极极限限值值与与k有有关关,

13、则则可可断断言言极极限限不不存存在在;(2) 找两种不同趋近方式,使找两种不同趋近方式,使),(lim00yxfyyxx存在,存在,但两者不相等,此时也可断言但两者不相等,此时也可断言),(yxf在点在点),(000yxP处极限不存在处极限不存在 .19n元元函函数数的的极极限限利用点函数的形式有利用点函数的形式有.20 设设n元元函函数数)(Pf的的定定义义域域为为点点集集0, PD是是其其聚聚点点且且DP 0,如如果果)()(lim00PfPfPP 则则称称n元元函函数数)(Pf在在点点0P处处连连续续. .例例5 5 讨论函数讨论函数 )0 , 0(),(, 0)0 , 0(),(,),

14、(2233yxyxyxyxyxf在在(0,0)处的连续性处的连续性三、多元函数的连续性三、多元函数的连续性.21解解取取,cos x sin y)0 , 0(),(fyxf )cos(sin33 2 , 0 ,2 当当 时时 220yx 2)0 , 0(),(fyxf),0 , 0(),(lim)0,0(),(fyxfyx 故函数在故函数在(0,0)处连续处连续.例例6 6 讨论函数讨论函数 0, 00,),(222222yxyxyxxyyxf在在(0,0)的连续性的连续性.22解解取取kxy 2200limyxxyyx 22220limxkxkxkxyx 21kk 其值随其值随k的不同而变化

15、,的不同而变化,极限不存在极限不存在故函数在故函数在(0,0)处不连续处不连续闭区域上连续函数的性质闭区域上连续函数的性质(1)最大值和最小值定理)最大值和最小值定理 在有界闭区域在有界闭区域D D上的多元连续函数,在上的多元连续函数,在D D上至少取得它的最大值和最小值各一次上至少取得它的最大值和最小值各一次.23(2)介值定理)介值定理 在有界闭区域在有界闭区域D D上的多元连续函数,如上的多元连续函数,如果在果在D D上取得两个不同的函数值,则它在上取得两个不同的函数值,则它在D D上上取得介于这两值之间的任何值至少一次取得介于这两值之间的任何值至少一次多元初等函数:由多元多项式及基本初

16、等函数多元初等函数:由多元多项式及基本初等函数经过有限次的四则运算和复合步骤所构成的可经过有限次的四则运算和复合步骤所构成的可用一个式子所表示的多元函数叫多元初等函数用一个式子所表示的多元函数叫多元初等函数一切多元初等函数在其定义区域内是连续的一切多元初等函数在其定义区域内是连续的定义区域是指包含在定义域内的区域或闭区域定义区域是指包含在定义域内的区域或闭区域.24).()(lim)()()()(lim00000PfPfPPfPfPPfPfPPPP 处处连连续续,于于是是点点在在的的定定义义域域的的内内点点,则则是是数数,且且是是初初等等函函时时,如如果果一一般般地地,求求多元函数的定义多元函

17、数的定义多元函数极限的概念多元函数极限的概念(注意趋近方式的(注意趋近方式的任意性任意性)多元函数连续的概念多元函数连续的概念闭区域上连续函数的性质闭区域上连续函数的性质四、小结四、小结.25 若若点点),(yx沿沿着着无无数数多多条条平平面面曲曲线线趋趋向向于于点点),(00yx时时,函函数数),(yxf都都趋趋向向于于 A,能能否否断断定定Ayxfyxyx ),(lim),(),(00?思考题思考题.26不能不能.例例,)(),(24223yxyxyxf )0 , 0(),(yx取取,kxy 2442223)(),(xkxxkxkxxf 00 x但是但是 不存在不存在.),(lim)0,0

18、(),(yxfyx原因为若取原因为若取,2yx 244262)(),(yyyyyyf .41思考题解答思考题解答.27练练 习习 题题一一、 填填空空题题: : 1 1、 若若yxxyyxyxftan),(22 , ,则则),(tytxf= =_ _ _ _ _. . 2 2、 若若xyyxyxf2),(22 , ,则则 )3, 2(f_ _ _ _ _ _ _ _ _ _ _; ; ), 1(xyf_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. . 3 3、 若若)0()(22 yyyxxyf, ,则则 )(xf_ _ _ _ _ _ _ _ _. . 4 4、 若若2

19、2),(yxxyyxf , ,则则 ),(yxf_ _ _ _ _ _ _ _ _ _. .函函数数)1ln(4222yxyxz 的的定定义义域域是是_ _ _ _ _ _ _ _ _ _ _. . .28 6 6、函函数数yxz 的的定定义义域域是是_ _ _ _ _ _ _ _ _ _ _ _ _ _ _. . 7 7、函函数数xyzarcsin 的的定定义义域域是是_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. . 8 8、函函数数xyxyz2222 的的间间断断点点是是_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _. .二、二、 求下列各极限求下列

20、各极限: :1 1、 xyxyyx42lim00 ;2 2、 xxyyxsinlim00;3 3、 22222200)()cos(1limyxyxyxyx . .29三三、 证证明明:0lim2200 yxxyyx. .四四、 证证明明极极限限yxxyyx 11lim00不不存存在在 . .30练习题答案练习题答案一一、 1 1、 ),(2yxft; 2 2、1213 , , ),(yxf; 3 3、 xx21 ; 4 4、 yyx 112; 5 5、 xyyxyx4, 10),(222 ; 6 6、 yxyxyx 2, 0, 0),(; 7 7、 xyxxyx , 0),( xyxxyx ,

21、 0),(; 8 8、 02),(2 xyyx. . 二二、1 1、41 ; 2 2、0 0; 3 3、 . . .31复合函数求导法则复合函数求导法则先回忆一下一元复合函数的微分法则先回忆一下一元复合函数的微分法则可可导导而而若若)()(xuufy 则复合函数则复合函数 )(xfy 对对 x 的导数为的导数为dxdududydxdy 这一节我们将把这一求导法则推广到多元函这一节我们将把这一求导法则推广到多元函数的情形,主要介绍多元复合函数的微分法和隐数的情形,主要介绍多元复合函数的微分法和隐函数的微分法。我们知道,求偏导数与求一元函函数的微分法。我们知道,求偏导数与求一元函数的导数本质上并没

22、有区别,对一元函数适用的数的导数本质上并没有区别,对一元函数适用的微分法包括复合函数的微分法在内,在多元函数微分法包括复合函数的微分法在内,在多元函数微分法中仍然适用,那么为什么还要介绍多元微分法中仍然适用,那么为什么还要介绍多元.32复合函数的微分法和隐函数的微分法呢?复合函数的微分法和隐函数的微分法呢?这主要是对于没有具体给出式子的所谓抽象函数这主要是对于没有具体给出式子的所谓抽象函数如如),(22xyyxfz 它是由它是由),(vufz xyvyxu ,22及复合而成的复合而成的由于由于 f 没有具体给出没有具体给出时时在求在求yzxz , 一元复合函数的微分法则就无能为力了,为一元复合

23、函数的微分法则就无能为力了,为此还要介绍多元复合函数的微分法和隐函数的此还要介绍多元复合函数的微分法和隐函数的微分法。微分法。.33一、链式法则一、链式法则定理如果函数定理如果函数)(tu 及及)(tv 都在点都在点t可可导,函数导,函数),(vufz 在对应点在对应点),(vu具有连续偏具有连续偏导数,则复合函数导数,则复合函数)(),(ttfz 在对应点在对应点t可可导,且其导数可用下列公式计算:导,且其导数可用下列公式计算: dtdvvzdtduuzdtdz 证证,获获得得增增量量设设tt ),()(tttu 则则);()(tttv 由由于于函函数数),(vufz 在在点点),(vu有有

24、连连续续偏偏导导数数.34,21vuvvzuuzz 当当0 u,0 v时时,01 ,02 tvtutvvztuuztz 21 当当0 t时时, 0 u,0 v,dtdutu ,dtdvtv .lim0dtdvvzdtduuztzdtdzt .35上定理的结论可推广到中间变量多于两个的情况上定理的结论可推广到中间变量多于两个的情况.如如dtdwwzdtdvvzdtduuzdtdz zuvwt以上公式中的导数以上公式中的导数 称为称为dtdz 上定理还可推广到中间变量不是一元函数上定理还可推广到中间变量不是一元函数而是多元函数的情况:而是多元函数的情况:).,(),(yxyxfz .36 如如果果

25、),(yxu 及及),(yxv 都都在在点点),(yx具具有有对对x和和y的的偏偏导导数数,且且函函数数),(vufz 在在对对应应点点),(vu具具有有连连续续偏偏导导数数,则则复复合合函函数数),(),(yxyxfz 在在对对应应点点),(yx的的两两个个偏偏导导数数存存在在,且且可可用用下下列列公公式式计计算算 xvvzxuuzxz , yvvzyuuzyz .链式法则如图示链式法则如图示zuvxy.37 xz uzxu vz,xv yz uzyu vz.yv 称为标准法则或称为标准法则或 法法则则22 这个公式的特征:这个公式的特征:函数函数),(),(yxvyxufz 有两个自变量有

26、两个自变量 x 和和 y故法则中包含故法则中包含yzxz ,两个公式;两个公式;.38由于在复合过程中有两个中间变量由于在复合过程中有两个中间变量 u 和和 v故法则中每一个公式都是两项之和,这两故法则中每一个公式都是两项之和,这两项分别含有项分别含有 vzuz ,每一项的构成与一元复合函数的链导法则类似,每一项的构成与一元复合函数的链导法则类似,即即“函数对中间变量的导数乘以中间变量对函数对中间变量的导数乘以中间变量对自变量的导数自变量的导数”多元复合函数的求导法则简言之即:多元复合函数的求导法则简言之即:“分道相加,连线相乘分道相加,连线相乘” ” .39 类类似似地地再再推推广广,设设)

27、,(yxu 、),(yxv 、),(yxww 都都在在点点),(yx具具有有对对x和和y的的偏偏导导数数,复复合合函函数数),(),(),(yxwyxyxfz 在在对对应应点点),(yx的的两两个个偏偏导导数数存存在在,且且可可用用下下列列公公式式计计算算 xwwzxvvzxuuzxz , ywwzyvvzyuuzyz . zwvuyx.40特殊地特殊地),(yxufz 其中其中),(yxu 即即,),(yxyxfz 令令, xv , yw , 1 xv, 0 xw, 0 yv. 1 yw,xfxuufxz .yfyuufyz 两者的区别两者的区别把把复复合合函函数数,),(yxyxfz 中中

28、的的y看看作作不不变变而而对对x的的偏偏导导数数 把把),(yxufz 中中的的u及及y看看作作不不变变而而对对x的的偏偏导导数数区别类似区别类似.41注注 此公式可以推广到任意多个中间变量和任此公式可以推广到任意多个中间变量和任意多个自变量的情形意多个自变量的情形如如),(21muuufz ),(21niixxxuu ), 2 , 1(mi 则则), 2 , 1( ,1njxuuzxzjimiij 从以上推广中我们可以得出:所有公式中从以上推广中我们可以得出:所有公式中两两乘积的项数等于中间变量的个数,而与自两两乘积的项数等于中间变量的个数,而与自变量的个数无关变量的个数无关.42关于多元复

29、合函数求偏导问题关于多元复合函数求偏导问题这是一项基本技能,要求熟练掌握,尤其是求二这是一项基本技能,要求熟练掌握,尤其是求二阶偏导数,既是重点又是难点。对求导公式不求阶偏导数,既是重点又是难点。对求导公式不求强记,而要切实做到彻底理解。注意以下几点将强记,而要切实做到彻底理解。注意以下几点将会有助于领会和理解公式,在解题时自如地运用会有助于领会和理解公式,在解题时自如地运用公式公式用图示法表示出函数的复合关系用图示法表示出函数的复合关系函数对某个自变量的偏导数的结构函数对某个自变量的偏导数的结构(项数及项的构成)(项数及项的构成).43 的结构是求抽象的复合函的结构是求抽象的复合函数的二阶偏

30、导数的关键数的二阶偏导数的关键 ),(),(vufvufvu弄清弄清 ),(),(vufvufvu仍是复合函数仍是复合函数且复合结构与原来的且复合结构与原来的 f ( u , v ) 完全相同完全相同即仍是以即仍是以 u , v 为中间变量,以为中间变量,以 x , y 为自变量为自变量的复合函数的复合函数因此求它们关于因此求它们关于 x , y 的偏导数时必须使链式法则的偏导数时必须使链式法则),(vufuzu uvxyxvfxufvufxxvfxufvufxvvvuvuvuuu ),(),(.44在具体计算中最容易出错的地方是对在具体计算中最容易出错的地方是对 ),( vufu再求偏导数这

31、一步再求偏导数这一步 是与是与 f ( u , v ) 具具有相同结构的复合函数易被误认为仅是有相同结构的复合函数易被误认为仅是 u 的的函数,从而导致漏掉函数,从而导致漏掉),(vufu这这一一项项uvf原因就是不注意原因就是不注意 求抽象函数的偏导数时,一定要设中间变量求抽象函数的偏导数时,一定要设中间变量注意引用这些公式的条件注意引用这些公式的条件外层函数可微(偏导数连续)外层函数可微(偏导数连续) 内层函数可导内层函数可导 vuuvff ,的合并问题的合并问题视题设条件视题设条件.45例例 1 1 设设vezusin ,而,而xyu ,yxv , 求求 xz 和和yz .解解 xz u

32、zxu vzxv 1cossin veyveuu),cossin(vvyeu yz uzyu vzyv 1cossin vexveuu).cossin(vvxeu 例例 2 2 设设tuvzsin ,而而teu ,tvcos , 求求全全导导数数dtdz.46解解tzdtdvvzdtduuzdtdz ttuvetcossin ttetettcossincos .cos)sin(costttet 例例3 设设),(),(),(),(),( ryyrxxyxvvyxuuvufw 均满足复合函数求偏导数的条件均满足复合函数求偏导数的条件 计算计算 wrw,(两重复合问题)(两重复合问题)解解由链式法

33、则由链式法则wuvxyr.47rvvwruuwrw ryyurxxuru ryyvrxxvrv 故故)()(ryyvrxxvvwryyurxxuuwrw 同理可得同理可得)()( yyvxxvvwyyuxxuuww.48 例例 4 4 设设),(xyzzyxfw ,f具具有有二二阶阶 连连续续偏偏导导数数,求求xw 和和zxw 2. . 解解令令, zyxu ;xyzv 记记,),(1uvuff ,),(212vuvuff 同理有同理有,2f ,11f .22f xwxvvfxuuf ;21fyzf zxw2)(21fyzfz ;221zfyzf yzf .49 zf1zvvfzuuf 11;

34、1211fxyf zf2zvvfzuuf 22;2221fxyf 于是于是 zxw21211fxyf 2f y )(2221fxyfyz .)(22221211f yf zxyfzxyf 二、全微分形式不变性二、全微分形式不变性.50 设设函函数数),(vufz 具具有有连连续续偏偏导导数数,则则有有全全微微分分dvvzduuzdz ;当当),(yxu 、),(yxv 时时,有有dyyzdxxzdz .全微分形式不变形的实质:全微分形式不变形的实质: 无论无论 是自变量是自变量 的函数或中间变量的函数或中间变量 的函数,它的全微分形式是一样的的函数,它的全微分形式是一样的.zvu、vu、dyy

35、zdxxzdz dxxvvzxuuz dyyvvzyuuz .51 dyyudxxuuz dyyvdxxvvzduuz .dvvz 利用全微分形式不变性,在逐步作微分运算的利用全微分形式不变性,在逐步作微分运算的过程中,不论变量间的关系如何错综复杂,都可以过程中,不论变量间的关系如何错综复杂,都可以不加辨认和区分,而一律作为自变量来处理不加辨认和区分,而一律作为自变量来处理且作微分运算的结果对自变量的微分且作微分运算的结果对自变量的微分 ,dzdydx来说是线性的来说是线性的从而为解题带来很多方便,而且也不易出错从而为解题带来很多方便,而且也不易出错.52uxyzxtxzxzzfxyyfxfx

36、u xtxxy xtyfxyfxfxu 例例5 设设),(),(),(zxttxyzyxfu 各函数满足求导条件各函数满足求导条件求求xu 解一解一 变量间的关系如下图所示变量间的关系如下图所示.53这里变量间的关系比较混乱这里变量间的关系比较混乱用全微分来解用全微分来解由全微分定理由全微分定理dzzfdyyfdxxfdu dzzfdttdxxyfdxxf dzzfdzzdxxtdxxyfdxxf )( 注意到注意到 x , z 是独立自变量是独立自变量 解二解二.54由全微分定义由全微分定义xtyfxyfxfxu zfztyfzu 注注解法二在实际计算中显得十分灵便且不易出错解法二在实际计算

37、中显得十分灵便且不易出错dxxtyfxyfxfdu)( dzzfztyf)( 故故 .55三、小结三、小结1、链式法则、链式法则(分三种情况)(分三种情况)(特别要注意课中所讲的特殊情况)(特别要注意课中所讲的特殊情况)2、全微分形式不变性、全微分形式不变性(理解其实质)(理解其实质).56思考题思考题设设),(xvufz ,而而)(xu ,)(xv , 则则xfdxdvvfdxduufdxdz , 试试问问dxdz与与xf 是是否否相相同同?为为什什么么? .57思考题解答思考题解答不不相相同同.等等式式左左端端的的z是是作作为为一一个个自自变变量量x的的函函数数,而而等等式式右右端端最最后

38、后一一项项f是是作作为为xvu,的的三三元元函函数数, 写写出出来来为为 xxvuxdxduufdxdz),(.),(),(xvuxxvuxfdxdvvf .58练练 习习 题题一、填空题一、填空题: : 1 1、设、设xyyxzcoscos , ,则则 xz_; yz_. . 2 2、 设设22)23ln(yyxxz , ,则则 xz_; yz_._. 3 3、设、设32sinttez , ,则则 dtdz_._. 二二、设设uvuez , ,而而xyvyxu ,22,求求yzxz , . . .59三、设三、设)arctan(xyz , ,而而xey , ,求求dxdz. .四、设四、设)

39、,(22xyeyxfz ( (其其具具中中f有一阶连续偏导有一阶连续偏导 数数) ), ,求求yzxz ,. .五、设五、设)(xyzxyxfu ,(,(其其具具中中f有一阶连续偏导有一阶连续偏导 数数),),求求.,zuyuxu 六、设六、设),(yxxfz ,(,(其其具具中中f有二阶连续偏导数有二阶连续偏导数),),求求 22222,yzyxzxz . .60七、设七、设,)(22yxfyz 其中为可导函数其中为可导函数, , 验证验证: :211yzyzyxzx . .八、设八、设 ,),(其中其中yyxxz 具有二阶导数具有二阶导数, ,求求 .,2222yzxz .61练习题答案练

40、习题答案一、一、1 1、xyyyyxxxyxxxy222cos)cossin(cos,cos)sin(coscos ; 2 2、,)23(3)23ln(2222yyxxyxyx 2232)23(2)23ln(2yyxxyxyx ; 3 3、.)43(1)41(3232ttt 二、二、,)(22222222yxxyeyyxyxyxxz )(22222)(22yxxyeyxxyxyyz . .62三、三、xxexxedxdz221)1( . .四、四、.2,22121fxef yyzfyefxxzxyxy 五、五、.),(),1(fxyzuxzxfyuyzyfxu 六、六、,12222121122

41、fyfyfxz ,1)1(22221222fyfyfyxyxz .222422322fyxfyxyz .63八八、,)1(121122 xz 222111221122)( yz. .64偏偏 导导 数数 我们已经知道一元函数的导数是一个很重我们已经知道一元函数的导数是一个很重要的概念,是研究函数的有力工具,它反映了该要的概念,是研究函数的有力工具,它反映了该点处函数随自变量变化的快慢程度。对于多元函点处函数随自变量变化的快慢程度。对于多元函数同样需要讨论它的变化率问题。虽然多元函数数同样需要讨论它的变化率问题。虽然多元函数的自变量不止一个,但实际问题常常要求在其它的自变量不止一个,但实际问题常

42、常要求在其它自变量不变的条件下,只考虑函数对其中一个自自变量不变的条件下,只考虑函数对其中一个自变量的变化率,因此这种变化率依然是一元函数变量的变化率,因此这种变化率依然是一元函数的变化率问题,这就是偏导数概念,对此给出如的变化率问题,这就是偏导数概念,对此给出如下定义。下定义。.6500yyxxxz ,00yyxxxf ,00yyxxxz 或或),(00yxfx.一、偏导数的定义及其计算法一、偏导数的定义及其计算法.66同同理理可可定定义义函函数数),(yxfz 在在点点),(00yx处处对对y的的偏偏导导数数, 为为yyxfyyxfy ),(),(lim00000 记记为为00yyxxyz

43、 ,00yyxxyf ,00yyxxyz 或或),(00yxfy. .67hyxfyhxfyxfhx),(),(lim),(0 hyxfhyxfyxfhy),(),(lim),(0 .68偏导数的求法偏导数的求法 由偏导数的定义可知,求二元函数的由偏导数的定义可知,求二元函数的偏导数并不需要新的方法偏导数并不需要新的方法求求 时把时把 y 视为常数而对视为常数而对 x 求导求导xf 求求 时把时把 x 视为常数而对视为常数而对 y 求导求导yf 这仍然是一元函数求导问题这仍然是一元函数求导问题.69如如 在在 处处 ),(zyxfu ),(zyx,),(),(lim),(0 xzyxfzyxx

44、fzyxfxx ,),(),(lim),(0yzyxfzyyxfzyxfyy .),(),(lim),(0zzyxfzzyxfzyxfzz 偏导数的概念可以推广到二元以上函数偏导数的概念可以推广到二元以上函数.70一般地一般地 设设),(21nxxxfw ininiixixxxxfxxxxfxwi ),(),(lim110 ), 2 , 1(ni .71例例 1 1 求求 223yxyxz 在在点点)2, 1(处处的的偏偏导导数数解解 xz;32yx yz.23yx 21yxxz,82312 21yxyz.72213 例例 2 2 设设yxz )1, 0( xx, 求求证证 zyzxxzyx2

45、ln1 .证证 xz,1 yyx yz,ln xxy.72yzxxzyx ln1xxxyxyxyylnln11 yyxx .2z 原结论成立原结论成立例例 3 3 设设22arcsinyxxz ,求,求xz ,yz .解解 xz xyxxyxx2222211322222)(|yxyyyx |)|(2yy .|22yxy .73 yz yyxxyxx222221132222)()(|yxxyyyx yyxx1sgn22 )0( y00 yxyz不存在不存在例例 4 4 已知理想气体的状态方程已知理想气体的状态方程RTpV (R为常数) ,求证:为常数) ,求证:1 pTTVVp.74证证 VRT

46、p;2VRTVp pRTV;pRTV RpVT;RVpT pTTVVp2VRT pR RV pVRT . 1 .75有关偏导数的几点说明:有关偏导数的几点说明:、偏偏导导数数xu 是是一一个个整整体体记记号号,不不能能拆拆分分;、求分界点、不连续点处的偏导数要用求分界点、不连续点处的偏导数要用定义求;定义求; 计算计算 f x (x0 ,y0 ) 时可先将时可先将 y = y0 代入代入 f (x ,y ) 再对再对 x 求导然后代入求导然后代入 x = x0 计算计算 f y (x0 ,y0 ) 时同理时同理).0, 0(),0, 0(,),(,yxffxyyxfz求求设设例例如如 解解xx

47、fxx0|0|lim)0 , 0(0 0 ).0 , 0(yf 3、.764、 偏导数的实质仍是一元函数求导问题,具体偏导数的实质仍是一元函数求导问题,具体求导时要弄清是对哪个变量求导,其余均视为常求导时要弄清是对哪个变量求导,其余均视为常量,但由于变量较多,易产生混乱量,但由于变量较多,易产生混乱-重要的是重要的是区分清函数的类型区分清函数的类型这是出错的主要原因。这是出错的主要原因。5、若若 f( x , y ) =f( y , x ) 则称则称 f( x , y ) 关于关于 x , y 具有轮换对称性具有轮换对称性在求在求 时时22,yuyu 只需将所求的只需将所求的 22,xuxu

48、中的中的 x , y 互换即可互换即可.776、偏导数存在与连续的关系、偏导数存在与连续的关系一元函数中在某点可导一元函数中在某点可导 连续,连续,多元函数中在某点偏导数存在多元函数中在某点偏导数存在 连续,连续,例例如如,函函数数 0, 00,),(222222yxyxyxxyyxf,依依定定义义知知在在)0 , 0(处处,0)0 , 0()0 , 0( yxff.但函数在该点处并不连续但函数在该点处并不连续. 偏导数存在偏导数存在 连续连续.787、偏导数的几何意义、偏导数的几何意义,),(),(,(00000上上一一点点为为曲曲面面设设yxfzyxfyxM 如图如图几何意义几何意义: :

49、.79 偏偏导导数数),(00yxfx就就是是曲曲面面被被平平面面0yy 所所截截得得的的曲曲线线在在点点0M处处的的切切线线xTM0对对 x轴轴的的斜斜率率. 偏偏导导数数),(00yxfy就就是是曲曲面面被被平平面面0 xx 所所截截得得的的曲曲线线在在点点0M处处的的切切线线yTM0对对 y轴轴的的斜斜率率. 二、高阶偏导数二、高阶偏导数函函数数),(yxfz 的的二二阶阶偏偏导导数数为为),(22yxfxzxzxxx ),(22yxfyzyzyyy 纯偏导纯偏导.80),(2yxfyxzxzyxy ),(2yxfxyzyzxyx 混合偏导混合偏导定义:二阶及二阶以上的偏导数统称为高阶定

50、义:二阶及二阶以上的偏导数统称为高阶偏导数偏导数.例例 5设设13323 xyxyyxz,求求22xz 、xyz 2、yxz 2、22yz 及33xz .22xz ,62xy 33xz ,62y 22yz ;1823xyx yxz 2, 19622 yyxxyz 2. 19622 yyx.81观察上例中原函数、偏导函数与二阶混合偏导观察上例中原函数、偏导函数与二阶混合偏导函数图象间的关系:函数图象间的关系:原函数图形原函数图形偏导函数图形偏导函数图形偏导函数图形偏导函数图形二阶混合偏二阶混合偏导函数图形导函数图形.82例例 6 6 设设byeuaxcos ,求求二二阶阶偏偏导导数数.解解,co

51、sbyaexuax ;sinbybeyuax ,cos222byeaxuax ,cos222byebyuax ,sin2byabeyxuax .sin2byabexyuax 问题:问题:混合偏导数都相等吗?具备怎样的条件才混合偏导数都相等吗?具备怎样的条件才相等?相等?.83定定理理 如如果果函函数数),(yxfz 的的两两个个二二阶阶混混合合偏偏导导数数xyz 2及及yxz 2在在区区域域 D D 内内连连续续,那那末末在在该该区区域域内内这这两两个个二二阶阶混混合合偏偏导导数数必必相相等等例例 7 7 验验证证函函数数22ln),(yxyxu 满满足足拉拉普普拉拉斯斯方方程程 解解),ln

52、(21ln2222yxyx ,22yxxxu ,22yxyyu ,)()(2)(222222222222yxxyyxxxyxxu .84.)()(2)(222222222222yxyxyxyyyxyu 22222222222222)()(yxyxyxxyyuxu . 0 .85三、小结三、小结偏导数的定义偏导数的定义(偏增量比的极限)(偏增量比的极限)偏导数的计算、偏导数的几何意义偏导数的计算、偏导数的几何意义高阶偏导数高阶偏导数纯偏导纯偏导混合偏导混合偏导(相等的条件)(相等的条件)思考题思考题若函数若函数),(yxf在 点在 点),(000yxP连连续,能否断定续,能否断定),(yxf在点

53、在点),(000yxP的偏导数必定存在?的偏导数必定存在?.86思考题解答思考题解答不能不能.例如例如,),(22yxyxf 在在)0 , 0(处处连连续续,但但 )0 , 0()0 , 0(yxff 不不存存在在.87练练 习习 题题一一、填填空空题题: : 1 1、 设设yxztanln , ,则则 xz_ _ _ _ _ _ _ _ _; ; yz_ _ _ _ _ _ _ _ _ _. . 2 2、 设设 xzyxezxy则则),(_ _ _ _ _ _ _ _; ; yz_ _ _ _ _ _ _ _ _. . 3 3、 设设,zyxu 则则 xu_ _ _ _ _ _ _ _ _

54、_ _; ; yu_ _ _ _ _ _ _ _ _ _ _; ; zu_ _ _ _ _ _ _ _ _ _ _ _ _. . 4 4、 设设,arctanxyz 则则 22xz_ _ _ _ _ _ _ _ _; ; 22yz_ _ _ _ _ _ _ _; ; yxz2_ _ _ _ _ _ _ _ _ _ _ _ _. . .88 5 5、设、设zyxu)( , ,则则 yzu2_. .二、二、 求下列函数的偏导数求下列函数的偏导数: : 1 1、yxyz)1( ; 2 2、zyxu)arctan( . .三、三、 曲线曲线 4422yyxz, ,在点在点(2,4,5)(2,4,5)处

55、的切线与正向处的切线与正向x轴所成的倾角是多少轴所成的倾角是多少? ?四、四、 设设xyz , ,求求.,22222yxzyzxz 和和五、设五、设)ln(xyxz , ,求求yxz 23和和23yxz . .89六、六、验证验证: : 1 1、)11(yxez , ,满足满足zyzyxzx222 ; 2 2、222zyxr 满足满足 rzzryrxr 222222. . 七、设七、设 0, 00,arctanarctan),(22xyxyyxyxyxyxf 求求xyxff ,. . .90练习题答案练习题答案一、一、1 1、yxyxyxy2csc2,2csc22 ;2 2、)1(2 yxye

56、xy, ,)1(2 xxyexy;3 3、xxzxzyzyzyln1,1 , , xxzyzyln2 ;4 4、22222222222)(,)(2,)(2yxxyyxxyyxxy ;5 5、)ln1()(yxyzyyxz . .二、二、1 1、 xyxyxyxyyzxyyxzyy1)1ln()1(,)1(12; ;.91 2 2、zzyxyxzxu21)(1)( , , ,)(1)(21zzyxyxzyu zyxyxyxzu2)(1)ln()( . . 三三、4 . . 四四、,)1(,ln222222 xxyxxyzyyxz )1ln(12 yxyyxzx. . 五五、223231, 0yy

57、xzyxz . . .92七七、 0, 0; 0, 00, 0,0,arctan2yxyxyxyxyyxyxfx, , 0, 0, 10,0, 12222yxxyyxyxxfxy. . .93全全 微微 分分.94一、全微分的定义一、全微分的定义由一元函数微分学中增量与微分的关系得由一元函数微分学中增量与微分的关系得),(),(yxfyxxf xyxfx ),(),(),(yxfyyxf yyxfy ),( 二二元元函函数数 对对x和和对对y的的偏偏增增量量 二二元元函函数数 对对x和和对对y的的偏偏微微分分 全增量的概念全增量的概念.95 如如果果函函数数),(yxfz 在在点点),(yx的

58、的某某邻邻域域内内有有定定义义,并并设设),(yyxxP 为为 这这 邻邻 域域 内内 的的 任任 意意 一一 点点 , 则则 称称 这这 两两 点点 的的 函函 数数 值值 之之差差 ),(),(yxfyyxxf 为为函函数数在在点点P对对应应于于自自变变量量增增量量yx ,的的全全增增量量,记记为为z , 即即 z =),(),(yxfyyxxf 一一 般般 来来 讲讲 , 全全 增增 量量z 与与yx ,的的 相相 依依 关关 系系 是是 比比 较较 复复 杂杂 的的 , 因因 此此 我我 们们 希希望望能能象象一一元元函函数数的的微微分分那那样样,用用yx ,的的 线线 性性 函函 数

59、数yBxA 来来 近近 似似 表表示示,并并给给出出误误差差估估计计。由由此此引引出出如如下下定定义义: .96全微分的定义全微分的定义 如果函数如果函数),(yxfz 在点在点),(yx的全增量的全增量),(),(yxfyyxxfz 可以表示为可以表示为)( oyBxAz ,其中,其中BA,不依赖于不依赖于yx ,而仅与而仅与yx,有关,有关,22)()(yx ,则称函数则称函数),(yxfz 在点在点),(yx可微分,可微分,yBxA 称为函数称为函数),(yxfz 在点在点),(yx的的全微分全微分,记为,记为dz,即,即 dz= =yBxA . . 函函数数若若在在某某区区域域 D 内

60、内各各点点处处处处可可微微分分,则则称称这这函函数数在在 D 内内可可微微分分. 如果函数如果函数),(yxfz 在点在点),(yx可微分可微分, 则则函数在该点连续函数在该点连续.97事实上事实上),( oyBxAz , 0lim0 z ),(lim00yyxxfyx ),(lim0zyxf ),(yxf 故故函函数数),(yxfz 在在点点),(yx处处连连续续.二、可微的条件二、可微的条件.98 定定理理 1 1(必必要要条条件件)如如果果函函数数),(yxfz 在在点点),(yx可可微微分分,则则该该函函数数在在点点),(yx的的偏偏导导数数xz 、yz 必必存存在在,且且函函数数),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论