下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、圆的对称性(一)汶上县白石镇中学 邵华一、学生知识状况分析学生的知识技能基础:学生在七、八年级已经学习过轴对称图形以及中心对称图形的有关概念及性质,以及本节定理的证明要用到三角形全等的知识等。学生的活动经验基础:在平时的学习中,学生逐步适应应用多种手段和方法探究图形的性质。同时,在平时的教学中,我们都鼓励学生独立探索和四人小组互相合作交流,使学生形成一些数学活动的经验基础,具备一定探求新知的能力。二、教学任务分析本节课的教学目标是:知识与技能:1理解圆的轴对称性及其相关性质;2利用圆的轴对称性研究垂径定理及其逆定理过程与方法:1经历探索圆的对称性及相关性质的过程,进一步体会和理解研究几何图形的
2、各种方法。情感态度与价值观:1 培养学生独立探索,相互合作交流的精神。2 通过学习垂径定理及其逆定理的证明,使学生领会数学的严谨性和探索精神,培养学生学习实事求是的科学态度和积极参与的主动精神。教学重点:利用圆的轴对称性研究垂径定理及其逆定理教学难点:和圆有关的相关概念的辨析理解。三、教学过程分析第一环节 课前准备活动内容:每人制作两张圆纸片(最好用16K打印纸)预习课本P88P92内容活动目的:通过第1个活动,希望学生能利用身边的工具去画图,并制作图纸片,培养学生的动手能力;在第2个活动中,主要指导学生开展自学,培养良好的学习习惯。第二环节 创设问题情境,引入新课活动内容:教师提出问题:轴对
3、称图形的定义是什么?我们是用什么方法研究了轴对称图形?活动目的:通过教师与学生的互动,一方面使学生能较快进入新课的学习状态,另一方面也提高学生的学习的兴趣,让他们带着问题去学习,揭开了探究该节课内容的序幕。第三环节 讲授新课活动内容:(一) 想一想圆是轴对称图形吗?如果是,它的对称轴是什么?你能找到多少条对称轴?你是用什么方法解决上述问题的?(二) 认识弧、弦、直径这些与圆有关的概念。(三) 探索垂径定理。 做一做1在一张纸上任意画一个O,沿圆周将圆剪下,把这个圆对折使圆的两半部分重合2得到一条折痕CD3在O上任取一点A,过点A作CD折痕 的垂线,得到新的折痕,其中,点M是两条折痕的交点,即垂
4、足4将纸打开,新的折痕与圆交于另一点B,如右图问题:(1)观察右图,它是轴对称图形吗?如果是,其对称轴是什么? (2)你能发现图中有那些等量关系?说一说你的理由。总结得出垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。(四) 讲解例题及完成随堂练习。例1如右图所示,一条公路的转弯处是一段圆弧(即图中CD,点O是CD的圆心),其中CD=600m,E为CD上一点,且OECD,垂足为F,EF=90 m求这段弯路的半径练习:完成课本P92随堂练习:1(五) 探索垂径定理逆定理并完成随堂练习。想一想:如下图示,AB是O的弦(不是直径),作一条平分AB的直径CD,交AB于点M同学们利用圆纸片动手做
5、一做,然后回答:(1)上图是轴对称图形吗?如果是,其对称轴是什么?(2)你能发现图中有那些等量关系?说一说你的理由。总结得出垂径定理逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。练习:完成课本P92随堂练习:2活动目的:内容(一)的主要目的就是通过学生动手实验,采用折叠的方法认识圆是轴对称图形,其对称轴是任意一条过圆心的直线;内容(二)的主要目的就是让学生弄清和圆有关的这些概念,便于以后内容的学习研究;内容(三)的主要目的就是通过学生做一做,观察,猜想,验证等的过程得到新知,同时也培养学生合作交流的能力,以及再次体会研究图形的多种方法。内容(四)的主要目的让学生应用新知识构造直
6、角三角形,并通过方程的方法去解决几何问题。内容(五)的主要目的与内容(三)相似。实际教学效果:E对于活动(一),学生在探索圆是轴对称图形时,应该把机会留给学生,让他们相互交流,发表自己的想法;对于活动(二),要注意让学生借助图形去认识,并弄清他们之间的联系和区别,还应该注意补充一些概念,如半圆,劣弧,优弧等;对于活动(三),师生要按四个步骤共同操作,逐步引导学生通过观察,猜想到理论验证垂径定理,并帮助学生去理解和记忆垂径定理,如推理格式:如图所示COAB,CD为O 的直径 AM=BM,AD=BD,AC=BC。另外在证明垂径定理时,学生对如何证明平分弦所对的弧会较难表述。教师要运用轴对称性启发引导。对于活动(四),教师要引导学生如何应用垂径定理去更好衔接上,至于这一逆定理的探索过程与前面垂径定理的探索过程类似,在完成随堂练习时,教师要提示学生,符合条件图形有三种情况:圆心在平行弦外,在其中一条弦上、在平行弦内,但说理的思路都是一样。第四环节 课堂小结活动内容:师生互相交流总结:1. 本节课我们探索了圆的轴对称性;2. 利用圆的轴对称性研究了垂径定理及其逆定理;3. 垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题。活动目的:通过回顾本节课经历的各个环节,鼓励学生畅谈自己
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度年福建省高校教师资格证之高等教育心理学综合练习试卷B卷附答案
- 2024年度山西省高校教师资格证之高等教育法规押题练习试题B卷含答案
- 重庆市西南大学附中2024-2025学年高一上定时检测(一)语文试题含答案
- 2024年度xx村监测对象风险消除民主评议会议记录
- 湖南省长沙市长郡郡维中学2022-2023学年九年级上学期入学英语试卷(含答案)
- 2024年长沙市事业单位招聘计算机岗位专业知识试题
- 2024年培训学校业务外包协议
- 2024年工程咨询服务具体协议样式
- 2024医疗销售企业合作协议样本
- 2024房屋建筑施工劳务协议详例
- 养老机构(养老院)全套服务管理实用手册
- 企业文化管理第八章企业文化的比较与借鉴
- WST311-2023《医院隔离技术标准》
- 《缕书香伴我同行》课件
- 建设项目竣工环境保护验收管理办法
- 100道解方程 计算题
- 赛事承办服务投标方案(技术方案)
- 概率论(华南农业大学)智慧树知到课后章节答案2023年下华南农业大学
- 上海中考英语专项练习-动词的时态-练习卷一和参考答案
- GB 4806.7-2023食品安全国家标准食品接触用塑料材料及制品
- 我们的出行方式 (教学设计)2022-2023学年综合实践活动四年级上册 全国通用
评论
0/150
提交评论