版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、函数定义映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应为从集合A到集合B的一个映射(mapping)记作“”函数的概念1定义:如果A,B是非空的数集,如果按某个确定的对应关系,使对于集合A中的任意一个数,在集合B中都有唯一确定的数和它对应,那么就称为从集合A到集合B的一个函数,记作,。其中,叫做自变量,的取值范围A叫做函数的定义域;与的值相对应的的值叫做函数值,函数值的集合叫做函数的值域。函数与映射的关系与区别相同点:(1)函数与映射都是两个非空集合中元素的对应关系; (2)函数与映射的对
2、应都具有方向性; (3)A中元素具有任意性,B中元素具有唯一性; 区别:函数是一种特殊的映射,它要求两个集合中的元素必须是数,而映射中两个集合的元素是任意的数学对象。 函数的三要素函数是由三件事构成的一个整体,分别称为定义域值域和对应法则当我们认识一个函数时,应从这三方面去了解认识它例 已知函数f(x)=3x5x2,求f(3)、f(-)、f(a)、f(a+1)例 函数y与y3x是不是同一个函数?为什么?练习 判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? f ( x ) = (x 1) 0;g ( x ) = 1 f ( x ) = x; g ( x ) = f ( x ) =
3、x 2;f ( x ) = (x + 1) 2 f ( x ) = | x | ;g ( x ) = 重点一:函数的定义域各种类型例题分析例 求下列函数的定义域(用区间表示)(1);解:,解得函数定义域为.例 当a取何实数时,函数y=lg(-x2+ax+2)的定义域为(-1,2)?分析: 可转化为:确定a值,使关于x的不等式-x2+ax+2>0的解集为(-1,2).解: -x2+ax+2>0x2-ax-2<0,故由根与系数的关系知a=(-1)+2=1即为所求.练习、求下列函数的定义域(1)(2) 抽象函数定义域【类型一】“已知f(x),求f()”型例:已知f(x)的定义域是0
4、,5,求f(x+1)的定义域。【类型二】“已知f() ,求f(x)”型例:已知f(x+1) 的定义域是0,5,求f(x)的定义域。【类型三】“已知f(),求f()”型例:已知f(x+2)的定义域为-2,3),求f(4x-3)的定义域。【思路】f()f(x)f() 例. 函数的定义域为,则函数的定义域是_。 分析:因为相当于中的x,所以,解得或。例 已知函数f(2x)的定义域是-1,2,求f(log2x)的定义域.分析: 在同一法则f下,表达式2x与log2x的值应属于“同一范围”.解: -1x2,2x4故log2x4即log2log2xlog216x16.总结:已知F(g(x)的定义域为A,求
5、F(h(x)的定义域,关键是求出既满足g(x)B,又满足h(x)B的x取值集合,在此例中,A=-1,2,B=,4.例已知函数定义域为(0,2),求下列函数的定义域:(1) ;(2)。解:(1)由0x2, 得 练习1、函数的定义域是0,2,则函数的定义域是 _.2、已知函数的定义域是-1,1,则的定义域为 _.3、已知的定义域为,则的定义域为 _ 重点二:求函数解析式的几种常用方法1. 换元法:例 已知f(x+1)=+2x-3,求f(x)解: 令x+1=t,则x=t-1代入函数式中得:f(t)= +2(t-1)-3= -4 f(x)= -4说明:f(x),f(t)都是同一个对应法则,只是自变量的
6、表示不同,从函数来看没有区别.练习、1 若f(x)=2x2-1,求f(x-1) 2 已知函数f(2x+1)=3x+2,求f(x). 2. 配凑法:上例中,把已知的f(x+1)中的x+1看成是一个整体变量进行处理.f(x+1)=+2x+1-4 = -4用x代替 x+1,得: f(x)= -4例 已知f(x+)= , 求f(x). 分析:将用x+ 表示出来,但要注意定义域。解:f(x+)= =变式、1 已知x0,函数f(x)满足f()=,求f(x) . 2 已知,求3、待定系数法:例.一次函数f(x)满足ff(x)=9x+8,求f(x). 解:设此一次函数解析式为f(x)=kx+b,则有:ff(x
7、)=kf(x)+b =k(kx+b)+b = 由已知得: =9x+8.即 解得 或 所求一次函数解析式为:f(x)=3x+2,或f(x)=-3x-4.例 已知是二次函数,若,求.4. 解方程组法:例 设f(x)满足f(x)+2f()=x (x 0 ),求f(x).分析:要求f(x)需要消去f(),根据条件再找一个关于f(x)与f() 的等式通过解方程组达到目的。解:将f(x)+2f()=x 中的x用代替得f()+2f(x)= . 消去f() 得 : 例 若3f(x)+f(-x)=2x,求f(x).解:用-x替换式中x得:3f(-x)+f(x)=2+x. 消去f(-x) 得: f(x)=2-2x
8、练习、1 若,求 2 若满足求重点三 函数的值域、观察法: 例、求下列函数的值域(1) y=3x+2(-1x1) (2) 、配方法:例、已知函数,分别求它在下列区间上的值域。(1)xR; (2)3,4(3)0,1(4)0,5 练习: 1.已知函数,分别求它在下列区间上的值域。(1); (2); (3); (4)2.求函数 的值域说明:配方法是求“二次函数类”值域的基本方法,一般是根据函数所给x的取值范围,结合函数的图象求得函数的值域.例若实数x、y满足x2+4y2=4x,求S=x2+y2的值域解:4y2=4x-x20 x2-4x0,即0x4 当x=4时,Smax=16 当x=0时,Smin=0
9、 值域0S16例已知函数y=f(x)=x2+ax+3在区间x-1,1时的最小值为-3,求实数a的值分析:的位置取决于a,而函数的自变量x限定在-1,1内,因此,有三种可能性,应分别加以讨论解: 综合(1)(2)(3)可得:a=±7、换元法例、求函数的值域。解:令,则13-4x=t2 该二次函数的对称轴为t=1,又t0由二次函数的性质可知y4,当且仅当t=1即x=3时等式成立,原函数的值域为(-,4。例求函数的值域。解析:方法1、可用换元法解答 方法2、根据函数的单调性来做例 求函数 y=2x+2-3×4 x(-1x0) 的值域解 y=2x+2-3
10、3;4x =4·2x-3·22x 令 2x=t 例 练习、 1.求函数的值域2. 求函数的值域形如:的函数可令,则转化为关于t的二次函数求值。(四)、分离常数法例 求函数的值域。练习、1.求的值域 2.求值域 例、求函数的值域。解析:因为,而,所以,则,故 所求函数的值域为。(此题也可用判别式法求解)对于形如的有理分式函数均可利用部分分式发求其值域。(五)判别式法例解 由已知得 (2y-1)x2-(2y-1)x+(3y-1)=0 (*) (2)若2y-10,则xR =(2y-1)2-4(2y-1)(3y-1)0 即 (2y-1)(10y-3)0 练习 1 求函数的值域. 2
11、求函数y=的值域。(六)利用函数的单调性例 解: 例 解:调递减 例:若函数的定义域为R,求k的取值范围。【变】若函数 的定义域为R,求k的取值范围。函数的定义域与值域目的:1.能够由函数表达式求出定义域(各种不同类型);2.对含字母系数的定义域会对字母参数取值范围进行全面讨论;3.掌握求函数值域的基本方法:观察法、配方法、判别法、换元法、反函数法、均值不等式法、 及图象法。一、 选择题:1.函数y的取定义域是( )A.1,1 B. C.0,1 D.1,12.已知函数f(x)的定义域是一切实数,则M的取值范围是( )A.0m1 B.0m4 C.m4 D.0m43.已知函数f(x)的定义域为0,1,那么函数f(x1)的定义域为( )A.0,1 B.1,2 C.1, D.,11,5.函数y2的值域是( )A.2,2 B.1,2 C.0,2 D.,6.值域是(0,)的函数是( )A.y52 B.y() C.y D.7.函数的值域是( )A.(,1)(5,) B.(1,5) C. (,1)(1,) D.(,)(,)8.函数的值域是( )A.1,1 B.0,1 C.1,0 D.1,29.函数的值域为( )A. B. C. D.10.函数y|x1|x2|的值域是( )A. B. C. D. 二、填空题:11函数的定义域为_12设,则f(x)的定义域是_13函数y2的值域为_14函数y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 干部能力 课件
- 《电商图片处理基础》高职全套教学课件
- 人教版手指课件
- 第六讲 欢度节日(看图写话教学)-二年级语文上册(统编版)
- 2024年辽宁省中考生物真题卷及答案解析
- 幼儿园小班音乐《合拢放开》教案
- 西京学院《影视作品分析》2021-2022学年第一学期期末试卷
- 西京学院《数据挖掘》2022-2023学年期末试卷
- 人教版八年级物理《光沿直线传播》
- 西京学院《继电保护装置》2021-2022学年期末试卷
- 2024年公安智能外呼项目合同
- 河南省信阳市2024-2025学年七年级上学期期中历史试题(含答案)
- GB/T 44570-2024塑料制品聚碳酸酯板材
- 2024年学校食堂管理工作计划(六篇)
- 体育赛事组织服务协议
- 天车工竞赛考核题
- 民办非企业单位理事会制度
- 临床输血的护理课件
- 民生银行在线测评真题
- 人教版(PEP)小学六年级英语上册全册教案
- 2024年木屑购销合同范本
评论
0/150
提交评论