第12章环境工程原理反应动力学的方法_第1页
第12章环境工程原理反应动力学的方法_第2页
第12章环境工程原理反应动力学的方法_第3页
第12章环境工程原理反应动力学的方法_第4页
第12章环境工程原理反应动力学的方法_第5页
已阅读5页,还剩48页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第一节 动力学实验及实验数据的解析方法第二节 间歇反应器的解析间歇反应器实验及其数据解析方法第三节 连续反应器的解析连续反应器实验及其数据解析方法第十二章 反应动力学的解析方法本章主要内容第一节 反应速率的一般解析方法一、动力学实验的一般步骤二、动力学实验数据的一般解析方法三、反应器的物料衡算 本节的主要内容一、动力学实验的一般步骤确定反应速率与反应物浓度之间的关系;确定反应速率与pH值、共存物质、溶剂等反应条件的关系;确定反应速率常数及其与温度、pH值等反应条件的关系。(一)动力学实验的目的第一节 反应速率的一般解析方法一般步骤:保持温度和pH值等反应条件不变,找出反应速率与反应物浓度的关系

2、;保持温度不变,研究pH值等其它反应条件对反应速率的影响,确定反应速率常数与温度以外的反应条件的关系;保持温度以外的反应条件不变,测定不同温度下的反应速率常数,确定反应速率常数与温度的关系,在此基础上求出(表观)活化能。(二)动力学实验的一般方法第一节 反应速率的一般解析方法 (1)直接测量关键组分的浓度 (2)测定反应混合物或反应系统的物理化学性质获取的第一手数据: (1)不同反应时间关键组分的浓度(间歇反应器) (2)不同反应条件下反应器出口处的关键组分的浓度(连续反应器)测量对象:第一节 反应速率的一般解析方法(一)间歇反应动力学实验及其数据的解析方法积分法: 判断实验数据与某积分形式的

3、速率方程是否一致微分法: 根据试验数据求出不同浓度时的反应速率(作图法或计算法),之后根据反应速率与反应物浓度的关系,确定反应速率方程。 二、动力学实验数据的一般解析方法第一节 反应速率的一般解析方法(二)连续反应动力学实验及其数据的解析方法 1管式反应器“积分反应器(integral reactor)”:反应器出口处的转化率5;反应器内反应组分的浓度变化显著“微分反应器(differential reactor)”:反应器出口处的转化率 5;反应器内的反应组分的浓度变化微小;可以通过反应器进出口的浓度差直接计算出反应速率微分反应器00AAncnqAAAAndccdnnq0000AAn0cnq

4、AAncnq积分反应器第一节 反应速率的一般解析方法特点:动力学数据的解析比较容易。转化率的大小没有限制,因此对分析的要求也不太苛刻。应用:污水处理特性以及污水处理新技术、新工艺的研究。 2槽式反应器第一节 反应速率的一般解析方法A的进入量A的排出量A的反应量A的积累量 qnA0qnA(-rA)VdnA/dt三、反应器的物料衡算 单位时间内A的物料衡算式如下:A的流入量qnA0 (kmol/s)体积VA的存在量nAA的反应量RA(kmol/s)A的排出量qnA (kmol/s)反应器的基本方程第一节 反应速率的一般解析方法本节思考题第一节 反应速率的一般解析方法(1)动力学实验的主要目的有哪些

5、?(2)用槽式反应器进行动力学实验有哪些优点?(3)对反应器进行物料衡算时,一般应注意哪些问题?(4)对于全混流槽式反应器和推流式反应器,分别如何选择物料衡算单元,为什么?一、间歇反应器的基本方程 二、间歇反应器的动力学实验方法三、实验数据的积分解析法四、实验数据的微分解析法第二节 间歇反应器的解析 本节的主要内容一、间歇反应器的基本方程 间歇反应器的物料衡算图 -dnA/dt=-rAV AxAAAVrdxnt00AAccAArdct0恒容反应浓度cA物质量nA体积VqnA0qnA(-rA)VdnA/dt第二节 间歇反应器的解析 (12.2.3)(12.2.6)二、间歇反应器的动力学实验方法实

6、验方法:测定cA随反应时间的变化获取的数据:不同反应时间关键组分的浓度数据解析的目的:确定反应级数和反应速率常数第二节 间歇反应器的解析 三、实验数据的积分解析法反应速率方程的积分式的一般形式由表11.3.1可知,对于一级反应:F(cA)ln(cA0/cA)F(cA)=(k)tG(xA)= (k)t由表11.3.1找一般规律?第二节 间歇反应器的解析 t(k)F(cA) 或 G(xA)表11.3.1单一反应(恒温恒容)的速率方程第二节 间歇反应器的解析 首先假设一个反应速率方程,求出它的积分式; 利用间歇反应器测定不同时间的关键组分的浓度(或转化率); 计算出不同反应时间时的 F(cA) 或

7、G(xA); 以 F(cA) 或 G(xA) 对时间作图。积分解析法的一般步骤积分解析法的一般步骤如果得到一条通过原点的直线,说明假设是正确的,则可以从该直线的斜率求出反应常数 k。第二节 间歇反应器的解析 F(cA)=(k)tG(xA)=(k)tt(k)F(cA) 或 G(xA)例题12.2.1 污染物A在某间歇反应器中发生分解反应,于不同时间测得反应器中A的浓度如下表所示。试分别利用积分法和微分法求出A的反应速率方程表达式。 t (min)07.51522.530cA (mg/L)50.832.019.712.37.6lncA3.933.472.982.502.03第二节 间歇反应器的解析

8、 假设反应为零级反应:假设反应为零级反应:- -r rA A= =k k,即,即 d dc cA A/d/dt t=-=-k k,c cA A=-=-ktkt+ +c cA0A0。 根据表中数据做根据表中数据做 c cA A- -t t 的曲线。的曲线。 发现没有线性关系。发现没有线性关系。 假设错误!假设错误!积分解析法:第二节 间歇反应器的解析 01020300102030405060t (min)cA (mg/L)假设反应为一级反应,则:假设反应为一级反应,则:- -r rA A= =kckcA A,即,即 d dc cA A/d/dt t=-=-kckcA A,lnlnc cA A=-

9、=-ktkt+ln+lnc cA0A0。根据表中数据做根据表中数据做 lnlnc cA A- -t t 的的曲线曲线发现有线性关系发现有线性关系假设正确!假设正确!k k =0.06341=0.06341,即即- -r rA A=0.06341=0.06341c cA A。第二节 间歇反应器的解析 01020301.52.02.53.03.54.04.5t (min)y=3.934-0.06341xlncA/ln(mg/L)半衰期解析法 ) 1() 12(11021nkctnAn021lg)1 () 1() 12(lglg1Ancnnktn 级反应的半衰期(表11.3.1)第二节 间歇反应器的

10、解析 (12.2.11)n =11-n(n 1)0Algc21lgt四、实验数据的微分解析法反应速率方程微分式的一般形式为:-rAkf(cA) -rAkG(xA)如:对于一级反应: f(cA)cA-rAkcAcA一级反应-rA微分解析法的关键?求出任一时间的反应速率第二节 间歇反应器的解析 第二节 间歇反应器的解析 对于n级反应:nAkcr Acnkrlnln)ln(lncAn级反应ln(-rA)n截距:lnk斜率:n 把cA对时间作图,并描出圆滑的曲线 利用图解法(切线法)或计算法,求得不同cA时的反应速率,即-dcA/dt。cAi的切线斜率rAcAitcA微分解析的一般步骤 把得到的反应速

11、率值对浓度 f (cA ) 作图。 假设一个速率方程,若与实验数据相符,则假设成立,之后可以求出动力学参数。 第二节 间歇反应器的解析 例题例题12.2.1污染物A在某间歇反应器中发生分解反应,于不同时间测得反应器中A的浓度如下表所示。试分别利用积分法和微分法求出A的反应速率方程表达式。 t (min)07.51522.530cA (mg/L)50.832.019.712.37.6第二节 间歇反应器的解析 微分法解析法 根据表中数据做cA-t 的曲线 利用切线法求出不同cA对应的反应速率rA。第二节 间歇反应器的解析 rA=-2.02901020300102030405060t (min)cA

12、 (mg/L)以以rA 对对cA 作图:作图:得到线性关系:得到线性关系:-rA=0.06341cA。所以该反应为一级所以该反应为一级反应。反应。反应速率常数为反应速率常数为0.0634 min-1。第二节 间歇反应器的解析 010203040506001234-rA (mg/L.min)CA (mg/L)y=0.0634x 让反应在让反应在A大量过剩的情况下进行,在反应过程中大量过剩的情况下进行,在反应过程中A的浓度的浓度变化微小,可以忽略不计,则反应速率方程可改写为:变化微小,可以忽略不计,则反应速率方程可改写为: -rAk cBb (12.2.15) -rAkcAacBb 的参数求法 让

13、反应在让反应在B大量过剩的情况下进行,在反应过程中大量过剩的情况下进行,在反应过程中B的浓度的浓度变化微小,可以忽略不计,则反应速率方程可改写为:变化微小,可以忽略不计,则反应速率方程可改写为: -rAk cAa (12.2.14)第二节 间歇反应器的解析 (1) (1) 在环境工程研究中,进行液相反应速率方程的实验测在环境工程研究中,进行液相反应速率方程的实验测定时,常采用间歇反应器,为什么?定时,常采用间歇反应器,为什么?(2) (2) 简述利用间歇反应器进行动力学实验的一般步骤。简述利用间歇反应器进行动力学实验的一般步骤。(3) (3) 试用流程图表达间歇动力学实验数据的积分解析法。试用

14、流程图表达间歇动力学实验数据的积分解析法。(4) (4) 试用流程图表达间歇动力学实验数据的微分解析法。试用流程图表达间歇动力学实验数据的微分解析法。(5) (5) 如何利用半衰期确定反应级数?如何利用半衰期确定反应级数?本节思考题第二节 间歇反应器的解析 一、槽式连续反应器二、平推流反应器第三节 连续反应器的解析 本节的主要内容一、槽式连续反应器一、槽式连续反应器(一)基本方程(一)基本方程基本方程的一般形式基本方程的一般形式全混流槽式连续反应器全混流槽式连续反应器(Continuous Stirred Tank Reactor,CSTR)在稳态状态下,组成不变,反应速率恒定,即在稳态状态下

15、,组成不变,反应速率恒定,即dnA/dt=0 qnA0qnA(-rA)VdnA/dt反应量反应量-rAV浓度浓度cA体积体积VA A的流入量的流入量000AvnAcqqA A的流出量的流出量AvAncqq-rAVqnA0 - qnA-rAVqv0cA0-qvcA 第三节 连续反应器的解析 -rAV qnA0 xA-rAV qv0cA0 xA令V/qv0AAArxc0 (12.3.5)AAArcc0(12.3.7)第三节 连续反应器的解析 恒容反应(二)槽式连续反应器的动力学实验方法实验方法:改变cA0或/和qvA0 测定反应器出口处的cA获取的数据:不同反应条件下的反应器出口处的cA-rAVq

16、v0cA0-qvcA 数据解析方法(类似于间歇反应器的微分解析法):(1)求不同cA时的反应速率-rA(2)根据-rA和cA的关系求出反应级数和反应常数。反应量-rAV浓度cA体积VA的流入量000AvnAcqqA的流出量AvAncqq第三节 连续反应器的解析 使用一槽式连续反应器测定液相反应A R的反应速率方程,保持原料中A的浓度为100 mmol/L不变,改变进口体积流量qv,测得不同qv时的反应器出口A的浓度如表所示,试求出A的反应速率方程。 qv (L/min)1624cA (mmol/L)42050例题12.3.1第三节 连续反应器的解析 解:根据槽式连续反应器的基本方程: -rAV

17、qv0cA0-qvcA 得到不同cA对应的-rA值如下表所示: cA (mmol/L)42050-rA (mmol/Lmin)964801200从表中数据可以看出,存在线性关系-rA=24cA。所以该反应为一级反应,反应速率常数为24min-1。第三节 连续反应器的解析 二、平推流反应器平推流反应器的特点: 在连续稳态操作条件下,反应器各断面上的参数不随时间变化而变化。 反应器内各组分浓度等参数随轴向位置变化而变化,故反应速率亦随之变化。 在反应器的径向断面上各处浓度均一,不存在浓度分布。平推流反应器一般应满足以下条件: 管式反应器:管长是管径的10倍以上。 固相催化反应器:填充层直径是催化剂

18、粒径的10倍以上。 第三节 连续反应器的解析 (一)平推流反应器的基本方程 在稳态状态下,dnA/dt=0 qnAqnA dqnA (-rA)dVdnA/dt- dqnA (-rA)dV(12.3.11)0 , ,000A0vAAnxqcqvAAAn ,qxcqdVAAAn ,xcqAAAnAnddxxqqV第三节 连续反应器的解析 基本方程的不同表达形式AAnrVqdd(12.3.12)AAAnrVxqdd0AAVrVcqd)(d(12.3.13a)(12.3.13b)微分形式AxAAAnrxqV00dAxAAArxc00d(12.3.15)(12.3.18)积分形式第三节 连续反应器的解析

19、 恒容反应的基本方程在恒容条件下: cAcA0(1-xA),即-cA0dxAdcA AAccAArc0d(12.3.19)第三节 连续反应器的解析 (二)积分反应器实验法实验方法:一般固定反应原料的组成,改变体积流量qv,即改变,测定反应器出口处的反应率或关键组分如反应物A的浓度(cA)。获取的数据:不同反应条件下的反应器出口处的转化率或cA第三节 连续反应器的解析 实验数据的积分解析法:(类似于间歇反应器的积分法)将-rA与xA的具体函数, -rAkf(xA )代入式(12.3.15)积分,可得k与xA的函数关系式AxAAAnxfdxqVk00)(12.3.21)第三节 连续反应器的解析 例

20、如:对于一级反应,在等温恒容条件下-rA=kcA = kcA0(1-xA) 将上式代入(12.3.21)积分,整理可得:k=-(qnA0/VcA0 )ln(1-xA) 利用上式、根据实验数据即可求得k的值。第三节 连续反应器的解析 实验数据的微分解析法:(类似于间歇反应器的微分法):式(12.3.13a)变形得:V/qn0 xA切线斜率-rA/cA0(2) 假设一个反应速率方程,判断实验数据是否与该方程相符(1) 把xA对V/ qv0作图,利用图微分法即可求得不同xA 时的-rAAAAnrVxqdd0)/(dd00VAAAqVxcr 第三节 连续反应器的解析 在直径为1cm长为3m的管式反应器

21、内进行乙酸的水解反应,在温度为298.15K时,测得不同原料供应速率时的出口处的转化率如下表所示。已知反应原料中的乙酸浓度为2.010-4mol/cm3,反应液的密度为1.0g/cm3保持不变。 试证明该反应为一级反应 求出该反应在298.15K时的反应速率常数原料供应速率qv0 (cm3/min)204070100160出口处的xA0.8530.6000.4330.3250.200例题12.3.2第三节 连续反应器的解析 解:由于反应器的长径比很大,可以认为为推流式反应器,又因为反应混合液的密度保持不变,可以认为是恒容反应。 根据已知条件,求得反应器的有效体积为32cm6 .2353000

22、. 141V以xA 对V/qv0作图可得右图,根据图上的实验点,画一光滑曲线。第三节 连续反应器的解析 0246810120.00.20.40.60.81.0 xAV/Q0V/qv0 xA由该曲线求出 xA0.20,0.40,0.60,0.80 时的 dxA/d(V/qv0),即 (-rA)/cA0 值,并继而求得 -rA,结果列于下表:xA0.200.400.600.801-xA0.800.600.00.80-rA(mol/cm3min) 2.8510-52.0010-51.4510-50.6010-5第三节 连续反应器的解析 假设一级反应(等温恒容)-rA=kcA=kcA0(1-xA)即-

23、rA与(1-xA)成直线关系。0.00.20.40.60.81.00.01.0 x10-52.0 x10-53.0 x10-5-rA(mol/cm3min)1-xA将实验所得的(1-xA)对-rA作图。得一直线,故假设成立,该反应为一级反应。图中的连线斜率即为kcA0,由此求得k=0.168min-1。第三节 连续反应器的解析 (三)微分反应器实验法 将式(12.3.13a)变形可得:AAAnrVxqdd0对于微分反应器:微分反应器00AAncnqAAAAndd00ccnnqVxqrAAA0n)(平均VxqcrAA0VA0)(平均AA0)(xcrA平均(12.3.28)(12.3.29)(12

24、.3.30)第三节 连续反应器的解析 (三)微分反应器实验法 (1) 实验方法:改变反应原料的组成或/和体积流量qv,测定反应器出口处的反应率或关键组分的浓度(cA)。(2) 获取的数据:不同反应条件下的反应器出口处的转化率或cA第三节 连续反应器的解析 微分反应器00AAncnqAAAAndd00ccnnq (3) 几点注意: 求得的反应速率是该反应器的平均速率,(-rA)平均 (-rA)平均对应的浓度是进出口的平均浓度(cA0cA)/2 (-rA)平均对应的转化率是进出口的平均转化率(xA0 xA)/2(-rA)平均20AAcc20AAxx (4) 根据以上计算,可获得不同浓度时的反应速率 已知速率方程,即可计算速率常数 借鉴间歇反应的微分法确定速率方程、计算速率常数第三节 连续反应器的解析 利用微分反应器对化合物A的气相聚合反应进行动力学研究。反应器的压力维持在101.3kPa。温度保持

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论