中考数学二次函数专题复习超强整理_第1页
中考数学二次函数专题复习超强整理_第2页
中考数学二次函数专题复习超强整理_第3页
中考数学二次函数专题复习超强整理_第4页
中考数学二次函数专题复习超强整理_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、初三一一二次函数归类复习一、二次函数与面积面积的求法:公式法:S=1/2*底*高 分割法/拼凑法1、说出如何表示各图中阴影部分的面积?图六22、抛物线y = -x 2x+3与X轴交与A、B (点A在B右侧),与y轴交与点C, D为抛物线的顶点,连接BD, CD,(1)求四边形BOCD的面积.(2)求 BCD的面积.(提示:本题中的三角形没有横向或 纵向的边,可以通过添加辅助线进行转化,把你想到的思路 在图中画出来,并选择其中的一种写出详细的解答过程)123、已知抛物线 y= - x x-4与x轴交与A、C两点,与y轴交与点B, 2(1)求抛物线的顶点 M的坐标和对称轴;(2)求四边形 ABMC

2、的面积.24、已一次函数y=x -2x-3与X轴父于A、B两点(A在B的左边),与y轴父于点C,顶点为P.(1)结合图形,提出几个面积问题,并思考解法;(2)求A、B、C、P的坐标,并求出一个刚刚提出的图形面积;(3)在抛物线上(除点若存在,请写出点C外),是否存在点N,使得S&abN的坐标;若不存在,请说明理由。变式一:在抛物线的对称轴上是否存点N,使得S&AB =S&BC,若存在直接写出 N的坐标;若不存在,请说明理由3变式一:在双曲线y 二 上是否存在点 x请说明理由.N ,使得Saab = S&bc ,右存在直接与出N的坐标;若不存在,25、抛物线y =

3、 -x -2x+3与x轴交与A、B (点A在B右侧),与y轴交与点C,若点E为第二象限抛物线上一动点,点E运动到什么位置时, EBC的面积最大,并求出此时点E的坐标和 EBC的最大面积.D【模拟题训练】1. (2015?三亚三模)如图,直线 y= - £x+2与x轴交于点B,与y轴交于点C,已知二次函数的图象 经过点B、C和点A (-1, 0).(1)求B、C两点坐标;(2)求该二次函数的关系式;(3)若抛物线的对称轴与 x轴的交点为点D,则在抛物线的对称轴上是否存在点P,使 PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(4)点E是线段BC上

4、的一个动点,过点 E作x轴的垂线与抛物线相交于点 F,当点E运动到什么位置时,四边形 CDBF的面积最大?求出四边形 CDBF的最大面积及此时 E点的坐标.二、二次函数与相似【相似知识梳理】二次函数为背景即在平面直角坐标系中,通常是用待定系数法求二次函数的解析式,在求点的坐标过程中需要用到相似三角形的一些性质,如何利用条件找到合适相似三角形是需要重点突破的难点。其实破解难点以后不难发现,若是直角三角形相似无非是如图1-1的几种基本型。若是非直角三角形有如图1-2的几种基本型。利用几何定理和性质或者代数方法建议方程求解都是常用的方法。【例题点拨】【例1】如图1-3,二次函数y = ax2 +bx

5、 + 2的图像与x轴相交于点A、B,与y轴相交于点C,经过点A的直线y = kx - 2与y轴相交于点D ,与直线BC垂直于点巳已知AB=3 ,求这个二次函数的解析式。【例2】如图1-4,直角坐标平面内,二次函数图象的顶点坐标为C(4,-%/3 ),且在x轴上截得的线段AB的长为6.(1)求二次函数解析式;(2)在x轴上方的抛物线上,是否存在点D,使得以A、B、D若存在,求出点D的坐标,若不存在,请说明理由。三点为顶点的三角形与 ABC相似?1 2【例3】如图1-6,在平面直角坐标系中,一次函数y = _-x +bx + c-的图像经过点A (4,0), C( 0,2)。4B (-2,0)是否

6、在该函数的图像上;D,点E在对称轴上,若以点 C、D、E为顶点的三角形(1)试求这个二次函数的解析式,并判断点(2)设所求函数图像的对称轴与 X轴交于点与4ABC相似,试求点E的坐标。【模拟题训练】2. (2015?崇明县一模)如图,已知抛物线y=Wx2+bx+c经过直线y=-±+1与坐标轴的两个交点 A、B,82点C为抛物线上的一点,ABC=90 °.(1)(3)求抛物线的解析式;求点C坐标;直线y= - -x+1上是否存在点P,使得4BCP与4OAB相似?若存在,请直接写出P点的坐标;若不存在,请说明理由.2三、二次函数与垂直【方法总结】应用勾股定理证明或利用垂直三垂直

7、模型【例1】:如图,直线l过等腰直角三角形 ABC顶点B, A、C两点到直线l的距离分别是2和3,则AB的长是()B 1【例2】:在平面直角坐标系中,抛物线y=ax2+bx+c与x轴的两个交点分别为 A (-3, 0)、B (1, 0),过顶点C作CH,x轴于点H.(1) 直接填写: a= , b= ,顶点 C 的坐标为 ;(2)在y轴上是否存在点 D,使得 ACD是以AC为斜边的直角三角形?若存在,求出点 D的坐标; 若不存在,说明理由;【例3】、(2011山东烟台)如图,已知抛物线y=x2+bx-3a过点A(1,0), B(0,-3),与x轴交于另一点 C. (1)求抛物线的解析式;(2)

8、若在第三象限的抛物线上存在点P,使 PBC为以点B为直角顶点的直角三角形,求点P的坐标;(3)在(2)的条件下,在抛物线上是否存在一点Q,使以P,Q,B,C为顶点的四边形为直角梯形?若存在,请求出点Q的坐标;若不存在,请说明理由.【模拟题训练】3. (2015?普陀区一模)如图,在平面直角坐标系xOy中,点A (m, 0)和点B (0, 2m) (m>0),点C在x轴上(不与点 A重合)(1)当BOC与4AOB相似时,请直接写出点 C的坐标(用 m表示)(2)当BOC与4AOB全等时,二次函数 y=-x2+bx+c的图象经过A、B、C三点,求m的值,并 求点C的坐标3. ) P是(2)的

9、二次函数图象上的一点,/ APC=90°,求点P的坐标及/ ACP的度数.4. 如图,已知抛物线 y=x2- 1的顶点坐标为 M,与x轴交于A、B两点.(1)判断4MAB的形状,并说明理由;(2)过原点的任意直线(不与 y轴重合)交抛物线于 C、D两点,连接 MC、MD,试判断MC、MD 是否垂直,并说明理由.卦四、二次函数与线段题目类型:求解线段长度(定值,最值):充分利用勾股定理、全等、相似、特殊角( 30° , 45° , 60° , 90° , 120。等)、特殊三角形(等腰、等腰直角、等边)、特殊线(中位线、中垂线、角平分线、弦等)、

10、 对称、函数(一次函数、反比例函数、二次函数等)等知识。判断线段长度关系:a=b, a=V2b, a+b=c, a+b= V2c, a 2+b2=c2 , a*b=c2【模拟题训练】5. (2015?山西模拟)如图1, P (m, n)是抛物线y=-x2 - 1上任意一点,l是过点(0, - 2)且与x4轴平行的直线,过点 P作直线PHH ,垂足为H.【特例探究】(1)填空,当 m=0 时,OP= , PH= ;当 m=4 时,OP= , PH=.【猜想验证】(2)对任意m, n,猜想OP与PH大小关系,并证明你的猜想.【拓展应用】(3)如图2,如果图1中的抛物线y=lx2 - 1变成y=x2

11、- 4x+3 ,直线l变成y=m (mv- 1).已知抛物线y=x2-4x+3的顶点为M,交x轴于A、B两点,且B点坐标为(3, 0), N是对称轴上的一点, 直线y=m (mv- 1)与对称轴于点C,若对于抛物线上每一点都有:该点到直线y=m的距离等于该点到点N的距离.用含m的代数式表示 MC、MN及GN的长,并写出相应的解答过程;求m的值及点N的坐标.卸图2I直接计算1例2.如图,抛物线尸%"闻I物与x轴交于A, B两点,与y轴交于点C,五、二次函数与角度结题方法总结角度相等的利用和证明:直接计算平行线 等腰三角形全等、相似三角形角平分线性质 倒角(/ 1 = /3, /2=/3

12、一/1 = /2)【构造三垂直模型法】 例1:如图,在平面直角坐标系的坐标为(4, 2),若/ AOP=45 ,则点P的坐标为(点D是抛物线的对称轴 !与x轴的交点,点 P是抛物线上一点,且/ DCP=30 ,则符合题意的点 P的.22【与几何图形结合】 例4、二次函数y x 2x3的图象与x轴交于A、B两点(点A在点B的左侧),与y轴交于C点,在二次函数的图象上是否存在点P,使得/ PAC为锐角?若存在,请你求出 P点的横坐标取值范围;若不存在,请你说明理由。【利用相似】例3、已知抛物线y=ax2+bx+c的图 象与x轴交于A、B两点(点A在点B的左边),与 y轴交于点C (0, 3),过点

13、C作x轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线y =x+5经过D、M两点.(1)求此抛物线的解析式;(2)连接AM、AC、BC ,试比较/MAB和2ACB的大小,并说明你的理由.【模拟题训练】6. (2015?松江区一模)已知在平面直角坐标系 xOy中,二次函数y=ax2+bx的图象经过点(1, - 3) 和点(-1, 5);(1)求这个二次函数的解析式;(2)将这个二次函数的图象向上平移,交 y轴于点C,其纵坐标为 m,请用m的代数式表示平移后 函数图象顶点M的坐标;(3)在第(2)小题的条件下,如果点 P的坐标为(2, 3), CM平分/ PCO,求m的值.如六、二次函数与平

14、行四边形解题方法总结:平行线的性质(同位角,内错角,同旁内角)比较一次函数k值 平行四边形的性质注意多解性【模拟题训练】7.如图,抛物线y=x2+bx-3与x轴交于A、B两点(点A在点B左侧),直线l与抛物线交于 A、C 亮点,其中C的横坐标为2.(1)求A、C两点的坐标及直线 AC的函数解析式;(2) P是线段AC上的一个动点,过点 P作y轴的平行线交抛物线于点 巳 求4ACE面积的最大值;(3)点G是抛物线上的动点,在 x轴上是否存在点 F,使以A、C、F、G四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点F的坐标;若不存在,请说明理由.七、二次函数与图形转换常见图像变换:

15、平移(上加下减,左加右减)轴对称(折叠)【模拟题训练】8. (2014?西城区一模)抛物线 y=x" kx - 3与x轴交于点A, B,与y轴交于点C,其中点B的坐标为(1+k, 0) .(1)求抛物线对应的函数表达式;(2)将(1)中的抛物线沿对称轴向上平移,使其顶点M落在线段BC上,记该抛物线为 G,求抛物线G所对应的函数表达式;(3)将线段BC平移得到线段B'C' (B的对应点为B', C的对应点为C'),使其经过(2)中所得抛物线 G的 顶点M,且与抛物线 G另有一个交点 N,求点B到直线OC'的距离h的取值范围. -模拟训练题参考答案

16、1考点:二次函数综合题.(1)分力1J令解析式 y= - -x+2中x=0和y=0 ,求出点B、点C的坐标;(2)设二次函数的解析式为 y=ax2+bx+c,将点A、B、C的坐标代入解析式,求出a、b、c的值,进而求得解析式;(3)由(2)的解析式求出顶点坐标,再由勾股定理求出CD的值,再以点C为圆心,CD为半径作弧交对称轴于Pi,以点D为圆心CD为半径作圆交对称轴于点 吃,P3,作CE垂直于对称轴与点 E,由等 腰三角形的性质及勾股定理就可以求出结论;(4)设出E点的坐标为(a, - la+2),就可以表示出 F的坐标,由四边形 CDBF的面积2=S_abcd+Szcef+Szbef求出S与

17、a的关系式,由一次函数的性质就可以求出结论.解答:解:(1)令x=0,可得y=2,令y=0,可得x=4,即点 B (4, 0) , C (0, 2);(2)设二次函数的解析式为y=ax2+bx+c,将点A、B、C的坐标代入解析式得,a-b4-c=016aHb+c二0 , c二 2解得:Tc-2抛物线的对称轴是x= 3 x.2即该二次函数的关系式为y= - lx2+±?x+2 ;222(3) y=-微x +x+2 ,2 2y= - (x -2,OD=22C (0, 2),OC=2.在RtAOCD中,由勾股定理,得CD造2CDP是以CD为腰的等腰三角形,CP1=DP2=DP3=CD .如

18、图1所示,作CH±x对称轴于H, " HP1=HD=2 , DPi=4.Pl (-, 4) , P2 (苣,也),P3 (W -);22 222(4)当 y=0 时,0=-工2+当+222X1= 1 , x2=4, B (4, 0). 直线BC的解析式为:y= - lx+2 .2如图 2,过点 C 作 CM, EF 于 M ,设 E (a, - la+2) , F (a,2EF= - -a2+-a+2-(-1a+2) =- -a2+2a (0X4).2 222''' s四边形cdbf=Sabcd+Sacef+Sabef=-BD ?OC+-EF?CM+

19、 -EF?BN , 222= J+Ja (a2+2a) +J (4-a) (a2+2a), =-a2+4a+-| (0 双 9).=-(a-2) 2+213a=2 时,S四边形cdbf的面积最大=,2E (2, 1).点评:2.考点: 分析:本题考查了二次函数的综合运用,涉及了待定系数法求二次函数的解析式的运用,勾股定理的运用,等腰三角形的性质的运用,四边形的面积的运用,解答时求出函数的解析式是关键.二次函数综合题.(1)根据直线的解析式求得 A、B的坐标,然后根据待定系数法即可求得抛物线的解析式;(2)作CDx轴于D,根据题意求得/ OAB= /CBD,然后求得AOBs BDC ,根据相似三

20、角形对 应边成比例求得 CD=2BD ,从而设BD=m ,则C (2+m , 2m),代入抛物线的解析式即可求得;(3)分两种情况分别讨论即可求得.解答:解:(1)把 x=0 代入 y= - -x+1 得,y=1, A (0, 1),把 y=0 代入 y= x+1 得,x=2, 2 B (2, 0),把 A (0, 1), B (2, 0)代入 y=x2+bx+c 得, o,抛物线的解析式 y=-x2 - -x+1 , S 4点评:3.考点:(2)如图,作CD±x轴于D, / ABC=90 °, ./ ABO+ Z CBD=90 °, ./ OAB= ZCBD ,

21、 / AOB= / BDC , . AOB s* BDC ,"=一=2,BD OACD=2BD , 设 BD=m ,代入 y=-x2 -.Zx+1 得,2m=1 (m+2) 2-Z (m+2) +1 ,解得,S 4S4C (4, 4);(3) OA=1 , OB=2 , AB=瓜B (2, 0), C (4, 4),BC=2 ;当AOB s' PBC时,则典=镖OA OB,PB=W5解得,PB=V5,12作 PELx 轴于 E,则AOBspeb,里里即里西OA AB 1 V5PE=1 ,P的纵坐标为=d ,代入y= - -lx+1得,x=0或x=4 ,2 .P (0, 1)或

22、(4, 1);当AOBsCBP时,则与=理,OB OA即判=里|,解得,pb=4泥, 21作 PE,x 轴于 E,则AOBspeb,,里里即里日昌OA AB 1 V5PE=4,P的纵坐标为d4,代入y= - Jx+1得,x= - 6或x=10 ,2P (- 6, 4)或(10, 4);m=2或m=0 (舍去),综上,P的坐标为(0, 1)或(4, - 1)或(-6, 4)或(10, - 4).本题是二次函数和一次函数的综合题,考查了待定系数法、三角形相似的判定和性质,数形结合运用是解题的关键.二次函数综合题.分析:解答:(1)分类讨论:BOCsboa, BOCsaob,根据相似三角形的性质,可

23、得答案;(2)根据全等三角形的性质,可得 C点坐标,根据待定系数法,可得函数解析式;(3)根据相似三角形的性质,可得关于a的方程,根据解方程,可得 a的值可得p点坐标,分类讨论:当点P的坐标为(心 1)时,根据正弦函数据,可得/COP的度数,根据等腰三角形得到性质,可得答案;当点P的坐标为(-夷,1)时,根据正弦函数据,可得/ AOP的度数,根据三角形外角的 性质,可得答案.解:(1)点 C 的坐标为(m,。)或(4m,。).或(-4m,。);(2)当BOC与4AOB全等时,点 C的坐标为(m,。),二次函数y= - x2+bx+c的图象经过 A、B、C三点,c = 2m.产b=0mb+c-0

24、 ,解得,二二q .1 m+nb+c-0乐2二次函数解析式为y=-x2+4,点C的坐标为(2,。); (3)作PHXAC于H,设点P的坐标为(a, - a2+4),/ AHP= / PHC=9。°, / APH= / PCH=9。° / CPH , . APH pch, .用=卫, PH CH即 PH2=AH ?CH ,(J+4) 2= (a+2) (2-a).解得 a=/§,或 a= Vs,即 P (英,1)或(一英,1), 如图:当点Pi的坐标为( 加,1)时,OPi=2=OC,sin/PiOE=W=;/COP=3。,2,/ACP= 飞丁=75当点P的坐标为(

25、-瓜1)时,sin/P2OF=点评:4.考点: 分析:解答:由三角形外角的性质,得/ P2OF=2/ACP,即/ ACP=15°.本题考查了二次函数综合题,(1)利用了相似三角形的性质,分类讨论是解题关键;(2)利用全等三角形的性质,解三元一次方程组;(3)利用了相似三角形的性质,分类讨论是解题关键,正弦函数及等腰三角形的性质,三角形外角的性质.二次函数综合题.(1)由抛物线的解析式可知OA=OB=OM=1 ,得出/ AMO= / MAO= / BMO= / MBO=45。从而得出 MAB是等腰直角三角形.(2)分别过C点,D点作y轴的平行线,交x轴于E、F,过M点作x轴的平行线交

26、EC于G,交DF于H,设D(m, m2-1), C(n, n2T),通过EG / DH ,得出=,从而求得 m、n的关系,根据DF OFm、n的关系,得出 CGMsmhd,利用对应角相等得出/ CMG+/ DMH=9。°,即可求得结论.解:(1) AMAB是等腰直角三角形.理由如下:由抛物线的解析式为:y=x2-1可知A (-1,。),B (1,。),OA=OB=OM=1 ,/ AMO= / MAO= / BMO= / MBO=45 °,/ AMB= / AMO+ / BMO=90 °, AM=BM , . MAB是等腰直角三角形.(2) MCXMD .理由如下:

27、分别过C点,D点作y轴的平行线,交x轴于E、F,过M点作x轴的平行线交 EC于G,交DF于H, 设 D(m, m2-1), C (n, n2-1),1. OE= - n, CE=1 - n2, OF=m , DF=m2- 1, OM=1 ,1. CG=n2, DH=m 2, EG / DH ,. EC.OE 一,DF OF解得m= - .k,n2. - CG_ n _ _ n MFL m _ 1_ _ nGM -n DH K 1TGM DH'. / CGM / MHD90 °, .CGMA MHD , ./ CMG / MDH , / MDH+ / DMH90 °

28、./ CMG+ / DMH90 °, ./ CMD90 °, 即 MCL MD .5. (2015?山西模拟)如图 1,P (m,n)是抛物线y1x2 - 1上任意一点,l是过点(0, - 2)且与x轴平行的直线,过点P作直线PHH,垂足为H.【特例探究】PH 1;当 m4 时,OP5, PH5(1)填空,当 m0时,OP 1【猜想验证】(2)对任意m, n,猜想OP与PH大小关系,并证明你的猜想.【拓展应用】(3)如图2,如果图1中的抛物线y1x2T 变成yx2-4x+3,直线l变成ym (mv- 1).已知抛物线yx2 4-4x+3的顶点为M,交x轴于A、B两点,且B点

29、坐标为(3, 0), N是对称轴上的一点,直线 ym (mv - 1)与对称轴于点 C,若对于抛物线上每一点都有:该点到直线ym的距离等于该点到点 N的距离.用含m的代数式表示 MC、MN及GN的长,并写出相应的解答过程;求m的值及点N的坐标.-x n;c7mi图2考点:二次函数综合题.分析:(1)根据勾股定理,可得 OP的长,根据点到直线的距离,可得可得 PH的长;(2)根据图象上的点满足函数解析式,可得点的坐标,根据勾股定理,可得PO的长,根据点到直线的距离,可得PH的长;(3)根据该点到直线 y=m的距离等于该点到点 N的距离,可得 CM=MN ,根据线段的和差,可得 GN的长; 对于抛

30、物线上每一点都有: 该点到直线y=m的距离等于该点到点 N的距离,可得方程,根据解方程, 可得m的值,再根据线段的和差,可得 GN的长.解答: 解:(1)当 m=0 时,P (0, 1), OP=1 , PH= - 1 - ( 2) =1;当 m=4 时,y=3, P (4, 3), OP=yT2=5, PH=3 ( 2) =3+2=5,故答案为:1, 1, 5, 5;(2)猜想:OP=PH,证明:PH交x轴与点Q, P 在 y= -x2 - 1 上,4 设 P (m, -m2 - 1), PQ=|-x2- 1|, OQ=|m|,44 OPQ是直角三角形,OP=Jpq2+CQ2=J(,坨2_

31、J)、川?=,0/ + 1)2=Tm2+1,PH=yp- (- 2) = (m2- 1) - (- 2) =m2+144OP=PH.(3) CM=MN= - m- 1, GN=2+m ,理由如下:对于抛物线上每一点都有:该点到直线y=m的距离等于该点到点 N的距离,M (2, T),即 CM=MN= - m- 1 .GN=CG - CM - MN= - m- 2 ( mT) =2+m .点 B 的坐标是(3,0), BG=1 , GN=2+m .由勾股定理,得 BN= 4bg2+GN2=/12+(2+m L,对于抛物线上每一点都有:该点到直线y=m的距离等于该点到点 N的距离,得即 1+ (2

32、+m) 2=( _ 巾)2. 15解得m=-.由 GN=2+m=2 =,即 N (0,一包),4 44点评:6.考点: 分析:m= - , N 点的坐标是(0,-).44本题考查了二次函数综合题,利用了勾股定理,点到直线的距离,线段中点的性质,线段的和差,利用 的知识点较多,题目稍有难度.二次函数综合题.(1)根据待定系数法,可得函数解析式;(2)根据顶点坐标公式,可得顶点坐标,根据图象的平移,可得M点的坐标;解答:(3)根据角平分线的性质,可得全等三角形,根据全等三角形的性质, 可得答案.解:(1)由二次函数 y=ax2+bx的图象经过点(1, - 3)和点(-可得方程组,根据解方程组,点评

33、:7.考点:分析:a=l4二次函数的解析式 y=x2-4x;(2) y=x2-4x 的顶点 M 坐标(2, -4),这个二次函数的图象向上平移,交 y轴于点C,其纵坐标为 m, 顶点M坐标向上平移 m,即M (2, m - 4);(3)由待定系数法,得 CP的解析式为y=21Zx+m ,2如图:作 MGLPC于 G,设 G (a, 2ZEa+m).2由角平分线上的点到角两边的距离相等,DM=MG .在 RtADCM 和 RtAGCM 中RtADCM RtAGCM (HL).CG=DC=4 , MG=DM=2 ,f + 与a)(2 - a ) 2+ (m- 4 -a-m) 2-22L士化简,得8

34、m=36,- q解得m=.2本题考察了二次函数综合题,(1)利用了待定系数法求函数解析式, 图象的平移方法;(3)利用了角平分线的性质,全等三角形的性质.(2)利用了二次函数顶点坐标公式,二次函数综合题.(1)将A的坐标代入抛物线中,易求出抛物线的解析式;将C点横坐标代入抛物线的解析式中,即可求出C点的坐标,再由待定系数法可求出直线AC的解析式.(2)欲求4ACE面积的最大值,只需求得 PE线段的最大值即可.PE的长实际是直线 AC与抛物线的函数值的差,可设 P点的横坐标为x,用x分别表示出P、E的纵坐标,即可得到关于 PE的长、x的函 如图,AF=CG=2 , A点的坐标为(- 0),因此F

35、点的坐标为(1,0);-1N0数关系式,根据所得函数的性质即可求得PE的最大值.(3)此题要分两种情况:以AC为边,以AC为对角线.确定平行四边形后,可直接利用平行四边形的性质求出 F点的坐标.解答: 解:(1)将 A ( 1, 0),代入 y=x2+bx3,得 1 - b - 3=0 ,解得b= - 2;y=x2 - 2x - 3.将C点的横坐标x=2代入y=x2 - 2x - 3,得 y= - 3,.C (2, - 3);,直线AC的函数解析式是 y= - x- 1 .(2) /A (-1, 0), C (2, - 3), OA=1 , OC=2 , SaacE=-PEX (OA+OC)P

36、EX3=5pE, ACE : : : 当PE取得最大值时,4ACE的面积取最大值.设P点的横坐标为x(- 1aV),贝U P、E 的坐标分别为: P (x, - x- 1), E (x, x2- 2x-3); P 点在 E 点的上方,PE=(-x- 1) - (x2-2x-3) = - x2+x+2 ,.当x时,PE的最大值二X.科24则saace 最大=PE='= I:) 即 ACE的面积的最大值是 . 22 4 88(3)存在4个这样的点F,分别是F1 (1 , 0), F2 ( - 3, 0), F3 (4+阮 0), F4 (4-阮 0).如图,连接C与抛物线和y轴的交点, ,

37、. C (2, - 3), G (0, - 3) .CG /X 轴,此时 AF=CG=2 , ,F点的坐标是(-3,0);如图,此时C, G两点的纵坐标关于 x轴对称,因此 G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(1士5 3),由于直线GF的斜率与直线 AC的相同,因此可设直线 GF的解析式为y=- x+h ,将G点代入后可得出直线的解析式为y= - x+4+x/V .因此直线GF与x轴的交点F的坐标为(4+书,0);如图,同可求出F的坐标为(4-币,0);综合四种情况可得出,存在 4个符合条件的F点.点评:此题考查了一次函数、 二次函数解析式的确定、 二次函数的应用、 平行四边形的判定和性质等知识,(3)题应将所有的情况都考虑到,不要漏解.8.考点:二次函数综合题.分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论