2013年全国初中数学联合竞赛试题及答案(共5页)_第1页
2013年全国初中数学联合竞赛试题及答案(共5页)_第2页
2013年全国初中数学联合竞赛试题及答案(共5页)_第3页
2013年全国初中数学联合竞赛试题及答案(共5页)_第4页
2013年全国初中数学联合竞赛试题及答案(共5页)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上2013年全国初中数学联合竞赛试题及参考答案第一试一、选择题(本题满分42分,每小题7分)1.计算(B)(A)(B)1(C)(D)22.满足等式的所有实数的和为(A)(A)3(B)4(C)5 (D)63.已知AB是圆O的直径,C为圆O上一点,的平分线交圆O于点D,若,则AB=(A)(A)2(B)(C)(D)34.不定方程的全部正整数角(x,y)的组数为(B)(A)1(B)2(C)3(D)45矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在线段BC上,且BF:FC=1:2,AF分别与DE,DB交于点M,N,则MN=(C)(A)(B)(C)(D)6.设n为正整数

2、,若不超过n的正整数中质数的个数等于合个数,则称n为“好数”,那么,所有“好数”之和为(B)(A)33(B)34(C)2013(D)2014二、填空题(本题满分28分,每小题7分)1.已知实数满足则 4 2.将一个正方体的表面都染成红色,再切割成个相同的小正方体,若只有一面是红色的小正方体数目与任何面都不是红色的小正方体的数目相同,则n= 8 3.在中,D,E,F分别在AB,BC,CA上,则的周长最小值为 4.如果实数满足,用A表示的最大值,则A的最大值为 第二试(A)一、(本题满分20分)已知实数满足求的值。解:设,则因为,即,所以 又因为 由,可得即注:符合条件的实数存在且不唯一,就是一组

3、。二、(本题满分25分)已知点C在以AB为直径的圆O上,过点B、C作圆O的切线,交于点P,连AC,若,求的值。解:连OC,因为PC,PB为圆O的切线,所以POC=POB。又因为OA=OC,所以OCA=OAC。又因为COB=OCA+OAC,所以2POB=2OAC,所以POB=OAC,所以OPAC。又POB=OAC,所以,所以。又,AB=2r,OB=r(r为圆O的半径),代入可求得OP=3r,AC=r.在中,由勾股定理可求得。所以。三、(本题满分25分)已知是一元二次方程的一个根,若正整数使得等式成立,求的值。解:因为是一元二次方程的一个根,显然是无理数,且。等式即,即,即因为是正整数,是无理数,

4、所以于是可得因此,是关于的一元二次方程的两个整数根,该方程的判别式又因为是正整数,所以,从而可得又因为判别式是一个完全平方数,验证可知,只有符合要求。把代入可得第二试(B)一、 (本题满分20分)已知,若正整数使得等式成立,求的值。解:因为,所以等式即即,整理得于是可得因此,是关于的一元二次方程的两个整数根,方程的判别式又因为是正整数,所以,从而可得又因为判别式是一个完全平方数,验证可知,只有符合要求,把代入得。二、(本题满分25分)在中,AB>AC,O、I分别是的外心和内心,且满足AB-AC=2OI。求证:(1)OIBC;(2)。证明(1)作OMBC于M,INBC于N。设BC=,AC=,AB=。易求得CM=,CN=,所以MN=CM-CN=OI,又MN恰好是两条平行线OM,IN之间的垂线段,所以OI也是两条平行线OM,IN之间的垂线段,所以OIMN,所以OIBC。(2)由(1)知OMNI是矩形,连接BI,CI,设OM=IN=(即为的内切圆半径),则三、(本题满分25分)若正数满足,求代数式的值。解:由于具有轮换对称性,不妨设(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论