版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、13.4 课题学习课题学习 最短路径问题最短路径问题 如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么? 两点之间两点之间,线段最短线段最短FEDCBA已知:如图,已知:如图,A,B在直线在直线L的两侧,的两侧,在在L上求一点上求一点P,使得,使得PA+PB最小。最小。 P连接连接AB,线段线段AB与直线与直线L的交点的交点P ,就是所求。,就是所求。思考?思考?为什么这样做就能得到最短距为什么这样做就能得到最短距离呢?离呢?根据:根据:两点之间线段最短两点之间线段最短.如图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管
2、线最短?P所以泵站建在点所以泵站建在点P P可使输气管线最短可使输气管线最短应用问题问题1相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地到河边什么地方饮马可使他所走的路线全程最短?探索新知探索新知BAl追问追问1这是一个实际问题,你打算首先做什么?这是一个实际问题,你打算首先做什么? 将将A,B 两地抽象为两个点,将河两地抽象为两个点,将河l 抽象为一条直抽象为一条直 线线 探索新知探索新知BAl(1)从A 地出发,到河边l 饮马,然后到B 地; (2)在河边饮马的地
3、点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地 到饮马地点,再回到B 地的路程之和; 探索新知探索新知追问追问2你能用自己的语言说明这个问题的意思,你能用自己的语言说明这个问题的意思, 并把它抽象为数学问题吗?并把它抽象为数学问题吗? 探索新知探索新知追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗? (3)现在的问题是怎样找出使两条线段长度之和为最 短的直线l上的点设C 为直线上的一个动点,上 面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图) BAlC追问1对于问题2,如何将点B“移”到l 的另一侧B处,满足直线l
4、 上的任意一点C,都保持CB 与CB的长度相等? 探索新知探索新知问题2 如图,点A,B 在直线l 的同侧,点C 是直 线上的一个动点,当点C 在l 的什么位置时,AC 与CB 的和最小? BlA追问2你能利用轴对称的有关知识,找到上问中符合条件的点B吗? 探索新知探索新知问题2 如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小? BlA作法:作法:(1)作点)作点B 关于直线关于直线l 的对称的对称 点点B;(2)连接)连接AB,与直线,与直线l 相交相交 于点于点C 则点则点C 即为所求即为所求 探索新知探索新知问题问题2 如图,
5、点如图,点A,B 在直线在直线l 的同侧,点的同侧,点C 是直是直线上的一个动点,当点线上的一个动点,当点C 在在l 的什么位置时,的什么位置时,AC 与与CB 的和最小?的和最小? BlABC探索新知探索新知问题问题3你能用所学的知识证明你能用所学的知识证明AC + +BC最短吗?最短吗? BlABC证明:证明:如图,在直线如图,在直线l 上任取一点上任取一点C(与点(与点C 不不重合),连接重合),连接AC,BC,BC 由轴对称的性质知,由轴对称的性质知, BC = =BC,BC=BC AC + +BC = = AC + +BC = = AB, AC+ +BC = = AC+ +BC 在A
6、BC中, ABAC+BC, AC +BCAC+BC即AC +BC 最短探索新知探索新知问题问题3你能用所学的知识证明你能用所学的知识证明AC + +BC最短吗?最短吗? BlABCC若直线若直线l 上任意一点(与点上任意一点(与点C 不重合)与不重合)与A,B 两点的距离两点的距离和都大于和都大于AC + +BC,就说明,就说明AC + + BC 最小最小 探索新知探索新知BlABCC追问追问1证明证明AC + +BC 最短时,为什么要在直线最短时,为什么要在直线l 上上任取一点任取一点C(与点(与点C 不重合),证明不重合),证明AC + +BC AC+ +BC?这里的?这里的“C”的作用是
7、什么?的作用是什么? 探索新知探索新知追问追问2回顾前面的探究过程,我们是通过怎样的回顾前面的探究过程,我们是通过怎样的 过程、借助什么解决问题的?过程、借助什么解决问题的? BlABCC 问题:如图所示,要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短 练习练习请你自己动手 试一试!已知:如图已知:如图A是锐角是锐角MON内部任意一点,内部任意一点,在在MON的两边的两边OM,ON上各取一点上各取一点B,C,组成三角形,使三角形周长最小,组成三角形,使三角形周长最小.BCDE分析:分析:当当ABAB、BCBC和和ACAC三条边的长度恰好能够
8、体现在三条边的长度恰好能够体现在一条直线上时,三角形的周长最小一条直线上时,三角形的周长最小 已知:如图已知:如图A是锐角是锐角MON内部任意一点,内部任意一点,在在MON的两边的两边OM,ON上各取一点上各取一点B,C,组成三角形,使三角形周长最小,组成三角形,使三角形周长最小.分别作点分别作点A关于关于OM,ON的对称的对称点点A,A;连接;连接A,A,分别交,分别交OM,ON于点于点B、点、点C,则点,则点B、点点C即为所求即为所求3.3.某班举行晚会,桌子摆成两直条某班举行晚会,桌子摆成两直条( (如图中的如图中的AOAO,BO)BO),AOAO桌面上摆满了桔子,桌面上摆满了桔子,OB
9、OB桌面上摆满了桌面上摆满了糖果,坐在糖果,坐在C C处的学生小明先拿桔子再拿糖果,处的学生小明先拿桔子再拿糖果,然后回到座位,请你帮助他设计一条行走路然后回到座位,请你帮助他设计一条行走路线,使其所走的总路程最短?线,使其所走的总路程最短?作法:作法:1.作点作点C关于直线关于直线 OA 的的 对称点点对称点点D, 2. 作点作点C关于直线关于直线 OB 的对称点点的对称点点E, 3.连接连接DE分别交直线分别交直线OA.OB于点M.N,则CM+MN+CN最短AOB. .EDMNGH 4. 如图:如图:C为马厩,为马厩,D为帐篷,牧马人某一天要为帐篷,牧马人某一天要从马厩牵出马,先到草地边某
10、一处牧马,再到从马厩牵出马,先到草地边某一处牧马,再到河边饮马,然后回到帐篷,请你帮他确定这一河边饮马,然后回到帐篷,请你帮他确定这一天的最短路线。天的最短路线。作法:作法:1.作点作点C关于直线关于直线 OA 的的 对称点点对称点点F, 2. 作点作点D关于直线关于直线 OB 的对称点点的对称点点E, 3.连接连接EF分别交直线分别交直线OA.OB于点G.H,则CG+GH+DH最短FAOBD CEGHABA/B/PQ最短路线:最短路线:A P Q BA P Q BlMN证明:在直线证明:在直线OA 上另外任取一点上另外任取一点G,连接,连接点点F,点点C关于直线关于直线OA对称,点对称,点G.M在在OA上,上,GF=G
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024担保合同范本样本
- 2024天津市小型建设工程施工合同(空白)
- 广告代理服务合同
- 写字间租赁协议
- 建筑施工承包合同范本
- 个人期货市场贷款合同
- 人才互助发展协议书
- 新版股权协议书样本
- 搅拌机租赁合同样式
- 技术服务合同样本地址
- 传感器基础知识单选题100道及答案解析
- 安全生产专(兼)职管理人员职责
- 湖南省长沙市长沙市长郡集团联考2024-2025学年九年级上学期11月期中语文试题(含答案)
- 家具制造业售后服务预案
- 电子产品维修合同范本1
- 《篮球原地双手胸前传接球》教案 (三篇)
- 第7章-机器学习
- 2024年T电梯修理考试100题及答案
- 第1课 课题一《课外生活小调查·周末生活我采访》(教案)-2024-2025学年三年级上册综合实践活动浙教版
- 世界的气温和降水课件
- DBJ-T15-60-2019建筑地基基础检测规范
评论
0/150
提交评论