基于模糊pid的智能温度控制研究_第1页
基于模糊pid的智能温度控制研究_第2页
基于模糊pid的智能温度控制研究_第3页
基于模糊pid的智能温度控制研究_第4页
基于模糊pid的智能温度控制研究_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 第1章 绪论1.1 课题的研究背景及意义现代控制系统,规模越来越大,系统越来越复杂,用传统的控制理论方法已不能满足控制的要求。智能控制是在经典控制理论和现代控制理论的基础上发展起来的,是控制理论、人工智能和计算机科学相结合的产物。智能控制主要分为模糊逻辑控制、神经网络控制和实时专家系统。研究的主要目标不仅仅是被控对象,同时也包含控制器本身。模糊理论是在美国柏克莱加州大学电气工程系L.A.Zadeh教授于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面内容。L.A.Zadeh教授在1965年发表的Fuzzy Set论文中首次提出表达事

2、物模糊性的重要概念隶属函数。模糊控制理论的核心是利用模糊集合论,把人的控制策略的自然语言转化为计算机能够接受的算法语言所描述的算法。但它的控制输出却是确定的,它不仅能成功的实现控制,而且能模拟人的思维方式,对一些无法构成数学模型的对象进行控制。“模糊概念”更适合于人们的观察、思维、理解、与决策,这也更适合于客观现象和事物的模糊性。“模糊控制”的特色就是一种“语言型”的决策控制。模糊控制技术,已经成为智能控制技术的一个重要分支,它是一种高级算法策略和新颖的技术。自从1974年英国的马丹尼(E.H.Mandani)工程师首先根据模糊集合理论组成的模糊控制器用于蒸汽发动机的控制以后,在其发展历程的3

3、0多年中,模糊控制技术得到了广泛而快速的发展。现在,模糊控制已广泛地应用于冶金与化工过程控制、工业自动化、家用电器智能化、仪器仪表自动化、计算机及电子技术应用等领域。尤其在交通路口控制、机器人、机械手控制、航天飞行控制、汽车控制、电梯控制、核反应堆及家用电器控制等方面,表现其很强的应用价值。并且目前已有了专用的模糊芯片和模糊计算机的产品,可供选用。我国对模糊控制器开始研究是在1979年,并且已经在模糊控制器的定义、性能、算法、鲁棒性、电路实现方法、稳定性、规则自调整等方面取得了大量的成果。著名科学家钱学森指出,模糊数学理论及其应用,关系到我国二十一世纪的国力和命运。1.2 PID控制的特点PI

4、D控制的优点与缺点: (1)PID控制具有适应性强的特点,适应各种控制对象,参数的整定是PID控制的一个关键问题;(2)只要参数整定合适,对大多数被控对象可以实现无差控制,稳态性能好,但动态特性不太理想;(3)PID控制不具有自适应控制能力,对于时变、非线性系统控制效果不佳。当系统参数发生变化时,控制性能会产生较大的变化,控制特性可能变坏,严重时可能导致系统的不稳定。虽然PID控制具有一些不理想的方面,但由于其具有十分明显的优点,在工业过程控制领域一直占据了主导地位,而且全世界的控制技术研究和应用人员对PID控制进行了大量的研究,努力改善PID控制的性能。围绕PID控制,并与多种其它控制技术结

5、合,形成了多种PID控制技术,以下是一些PID控制技术的发展和研究方向:(1)专家PID控制:专家控制(Expert Control )的实质是基于受控对象和控制规律的各种知识,并以智能的方式利用这些知识来设计控制器。利用专家经验来设计PID参数便构成专家PID控制;(2)模糊PID控制:模糊控制技术与PID控制结合构成模糊PID控制;(3)神经PID控制:运用神经网络技术对PID控制参数进行整定,构成神经PID控制;(4)遗传PID控制:用遗传算法对PID控制参数进行整定和优化,构成遗传PID控制;(5)灰色PID控制:灰色系统理论与PID控制结合进行系统控制构成PID控制。以上多种PID控

6、制方法,是PID控制与现代控制技术的结合,主要是在PID参数动态整定上进行了大量研究,在保持PID控制基本原理的基础上,改善了PID控制的性能,在工业过程控制领域继续占据着主导地位。1.3 模糊控制技术概述模糊控制主要还是建立在人的直觉和经验的基础上,这就是说,操作人员对被控系统的了解不是通过精确的数学表达式,而是通过操作人员丰富的实践经验和直观感觉。这种方法可以看成是一组探索式决策规则。模糊控制是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机控制方法,作为智能控制的一个重要分支,在控制领域获得了广泛应用。模糊控制的核心是模糊控制器,而模糊控制器的关键是模糊控制规则的确定,即模糊控

7、制规则表,模糊控制规则表是根据专家或者操作者的手动控制经验总结出来的一系列控制规则。一般最易为人所观察到的就是被控过程的输出变量及其变化率,因此通常把误差及其变化率ec作为模糊控制器的输入语言变量,把控制量作为模糊控制器的输出语言变量,从关系上看为,实质上体现为模糊控制器是一种非线性的比例微分(PD)控制关系。模糊控制系统框图如图1.1所示。图1.1 模糊控制系统框图误差e、误差变化率ec和输出y的实际变化范围,称为模糊控制的基本论域。在模糊控制中,用模糊概念来表述输入和输出变量,e和ec称为输入语言变量,y称为输出语言变量。语言变量是一个模糊集合,语言变量的取值称为语言变量值。语言变量值根据

8、问题需要确定,是语言变量的模糊子集。语言变量值是构成语言变量的词集。对于输入变量e、ec在基本论域内的一个实际值,为实施模糊控制,需要将其转化为语言变量值,这个转化依赖于语言变量值的隶属度函数,这种转化的过程叫模糊化。经过模糊化处理后,得到输入变量e、ec在输入基本论域内的一个实际值隶属于各语言变量值的程度。一般在一个模糊规则的前件中往往不只有一个命题,需要用模糊算子获得该规则前件被满足的程度。模糊算子的输入是两个或者多个输入的经过模糊化后得到的语言变量值(隶属度值),其输出是一条规则的整个前件被满足的隶属度。将一条规则的整个前件被满足的隶属度作为输入,根据规则“如果x是A,则y是B”,表示的

9、A与B之间的模糊蕴涵关系(AB)进行模糊推理,可以得到一个输出模糊集,即输出语言变量值,这种过程称为模糊推理。模糊推理又称模糊逻辑推理,它是一种以模糊推断为前提,运用模糊语言规则,推出一个新的近似的模糊推断结论的方法。模糊推理的关键是模糊控制规则的确定,即模糊控制规则表,模糊控制规则表是根据专家或者操作者的手动控制经验总结出来的一系列控制规则。由于一般情况下,模糊规则库由多条规则组成,经过模糊推理得到的是一个由每一条规则推理得出的输出语言变量值的集合,因此需要将这些输出语言变量值进行某种合成运算,得到一个综合的输出模糊集,这种过程称为模糊合成。将经过模糊合成得到的综合输出模糊集进行转化,即将语

10、言变量值转化为输入变量基本论域内的一个实值,对被控过程进行控制,这种过程叫模糊判决或者叫去模糊化。第2章 模糊控制理论2.1 模糊集合定义模糊集合:论域U到0,1区间的任一映射,即:U0,1 (2.1)确定U的一个模糊子集A,简称模糊集。称为A的隶属度函数,称为x对A的隶属度。 表示论域U中的元素x属于模糊子集A的程度或等级。它在0,1闭区间内可连续取值。的值越接近1,则x隶属于A的程度越高;越接近于0,表示属于A的程度低。2.2 模糊语言语言是一种符号系统,它包括自然语言,机器语言等等。其中自然语言是以字或词为符号的一种符号系统,人们用它表示主客观世界的各种事物、观念、行为和情感的意义,是人

11、们在日常工作和生活中所使用的语言。自然语言中常含有模糊概念。在实际生产过程中,人们发现,有经验的操作人员,虽然不懂被控对象或被控过程的数学模型,却能凭借经验采取相应的决策,很好的完成控制工作。例如,控制加热炉的温度时,就可以根据操作工人的经验调节电加热炉供电电压,达到升温和降温的目的,人工操作控制温度时,操作工人的经验,可以用下述语言来描述:若炉温低于给定温度则升压,低的越多,升压越高。若炉温高于给定温度则降压,高的越多,降压越低。若炉温等于给定温度,则保持电压不变。上述这些用以描述操作经验的一系列模糊性语言,就是模糊条件语句。再用模糊逻辑推理对系统的实时输入状态观测量进行处理。则可产生相应的

12、控制决策,这就是模糊控制。图2.1是一个人工操作的控制系统示意图。操作者首先通过传感器和仪表显示设备,知道系统的输出量及其变化的模糊信息。然后,操作者就用这些信息,根据已有的经验来分析判断,得出相应的控制决策,实现对工业对象的控制。图2.1 工业操作的控制系统一般来说,当人进行控制时,必须根据输入的偏差及偏差变化率综合地进行权衡和判决。操作者在对受控过程进行控制时,测量或观测到的偏差值和偏差的变化速率是一些清晰量,经过模糊化得到偏差、偏差变化率大、中、小的某个模糊量的概念。经过人的模糊决策后,得到决策的控制输出模糊量。当按照已定的模糊决策去执行具体的动作时,所执行的动作又必须以清晰的量表现出来

13、。因此,图2.1的人-机过程可归结为:将偏差e、偏差变化率ec的清晰量经模糊化得到模糊量E和EC,将模糊近似推理分析得到模糊控制输出U,然后经模糊决策判断,得到清晰值的控制量u去执行控制动作。2.3 模糊变量的隶属函数MATLAB模糊工具箱提供了许多函数,如表2.1所示的模糊隶属度函数,用以生成特殊情况的隶属函数,包括常用的三角型、高斯型、型、钟型等隶属函数。表2.1 模糊隶属度函数函数名函数功能描述pimf建立型隶属度函数gauss2mf建立双边高斯型隶属度函数gaussmf建立高斯型隶属度函数gbellmf生成一般的钟型隶属度函数smf建立S型隶属度函数trapmf生成梯形型隶属度函数tr

14、imf生成三角型隶属度函数zmf建立Z型隶属度函数2.4 模糊推理系统的数据结构管理函数介绍在MATLAB工具箱中,把模糊推理系统的各部分作为一个整体,提供了模糊推理系统数据结构管理函数,用以完成模糊规则的建立、解析与修改,模糊推理系统的建立、修改和存储管理以及模糊推理的计算及去模糊化等操作。(1)readfis功能:从磁盘载入模糊推理系统。(2)addrule功能:向模糊推理系统添加模糊规则。(3)addvar功能:向模糊推理系统添加变量。(4)convertfis功能:将模糊逻辑工具箱1.0版FIS转换为2.0版FIS结构。(5)evalfis功能:执行模糊推理计算。(6)gensurf功

15、能:生成模糊推理系统的曲面并显示。(7)getfis功能:获得模糊推理系统特性曲线。(8)mam2sug功能:将Mamdani FIS变换为Sugeno FIS。(9)parsrule功能:解析模糊规则。(10)plotfis功能:作图显示模糊推理系统输入/输出结构。(11)plotmf功能:绘制隶属度函数曲线。(12)rmmf功能:从模糊推理系统中删除隶属度函数。(13)rmvar功能:从模糊系统中删除对象。(14)setfis功能:设置模糊推理特性。(15)showfis功能:显示添加了注释的模糊推理系统。(16)showrule功能:显示模糊规则。(17)writefis功能:将模糊规则

16、保存到磁盘中。(18)addmf功能:向模糊推理系统添加隶属度函数。(19)defuzz功能:隶属度函数的去模糊化。去模糊化方法的5个可取的值如下: Centroid:面积重心法。 Bisector:面积平分法。 Mom:平均最大隶属度法。 Som:最大隶属度取最小法。 Lom:最大隶属度取最大法。(20)evalmf功能:通用隶属度函数估计。(21)mf2mf功能:隶属度函数间的参数转换。(22)newfis功能:建立新的模糊推理系统。2.5 论域、量化因子、比例因子的选择1、论域及基本论域模糊控制器把输入变量误差、误差变化的实际范围称为这些变量的基本论域。显然基本论域内的量为精确量。被控对

17、象实际要求的控制量的变化范围,称为模糊控制器输出变量(控制量)的基本论域,控制量的基本论域内的量也是精确量。若设误差变量所取的模糊子集的论域为:-n,-n+1,0,n-1,n误差变化变量所取的模糊子集的论域为:-m,-m+1,0,m-1,m控制量所取的模糊子集的论域为:-x,-x+1,0,x-1,x有关论域的选择问题,一般选误差的论域,选误差变化的论域,选控制量的论域。值得指出的是,从道理上讲,增加论域中的元素个数,即把等级细分,可提高控制精度,但这受到计算机字长的限制,另外也要增大计算量。因此,把等级分得过细,对模糊控制显得必要性不大。关于基本论域的选择,由于事先对被控对象缺乏经验知识,所以

18、误差及误差变化的基本论域只能做初步的选择,待系统调整时再进一步确定。控制量的基本论域根据被控对象提供的数据选定。 2、量化因子及比例因子 当由计算机实现模糊控制算法进行模糊控制时,每次采样得到的被控制量需经计算机计算,才能得到模糊控制器的输入变量误差及误差变化。为了进行模糊化处理,必须将输入变量从基本论域转换到相应的模糊集的论域,这中间需将输入变量乘以相应的因子,这就是量化因子。 量化因子和比例因子均是考虑两个论域变换而引出的,但对输入变量而言的量化因子确实具有量化效应,而对输出而言的比例因子只起比例作用。设计一个模糊控制器除了要有一个好的模糊控制规则外,合理地选择模糊控制器输入变量的量化因子

19、和输出控制量的比例因子也是非常重要的。量化因子和比例因子的大小及其不同量化因子之间大小的相对关系,对模糊控制器的控制性能影响极大。合理地确定量化因子和比例因子要考虑所采用的计算机的字长,还要考虑到计算机的输入输出接口中D/A和A/D转换的精度及其变化的范围。因此,选择量化因子和比例因子要充分考虑与D/A和A/D转换精度相协调,使得接口板的转换精度充分发挥,并使其变换范围充分被利用。量化因子Ke及Kec的大小对控制系统的动态性能影响很大。Ke选的较大时,系统的超调也较大,过渡过程较长。因为从理论上讲Ke增大,相当于缩小了误差的基本论域,增大了误差变量的控制作用,因此导致上升时间变短,但由于出现超

20、调,使得系统的过渡过程变长。Kec选择较大时,超调量减小,但系统的响应速度变慢。Kec才对超调的遏制作用十分明显。量化因子Ke和Kec的大小意味着对输入变量误差和误差变化的不同加权程度,二者之间相互影响。此外,输出比例因子Ku的大小也影响着模糊控制系统的特点。Ku选择过小会使系统动态响应过程变长,而Ku选择过大会导致系统振荡。输出比例因子Ku作为模糊控制器的总的增益,它的大小影响着控制器的输出,通过调整Ku可以改变对被控对象(过程)输入的大小。第3章 模糊控制器的设计3.1 模糊控制器的结构模糊控制器是模糊控制的核心,是模糊控制系统控制品质的主要保证,在模糊控制系统中,设计和调整模糊控制器的工

21、作是非常重要的。模糊控制是以专家的经验为基础实施的一种智能控制,它不需要精确地数学模型,因此,它的设计方法与常规控制器的设计方法有所不同。模糊控制器的设计,一般是在经验基础上初步确定相关参数及其规则,然后,在运行中反复调整以达到最佳的控制效果。模糊化化模糊推理清晰化对象知识库参考输入图3.1 模糊控制器的结构图3.2 模糊控制器的设计要设计一个模糊控制器来实现语言控制,必须解决一下三个方面的问题: 精确量的模糊化,把语言变量饿语言值化为某适当论域上的模糊子集;模糊控制算法的设计,通过一组模糊条件语句构成模糊控制规则,并计模糊控制规则决定的模糊关系;输出信息的模糊判决,并完成由模糊两到精确量的转

22、化。1、精确量的模糊化将精确量(数字量)转换为模糊量的过程称为模糊化(fuzzification),或称为模糊量化。精确量只有经过模糊化处理,变为模糊量,才能便于实现模糊控制算法。过程参数的变化范围是各不相同的,为了统一到指定的论域中来,模糊化的第一个任务是进行论域变换,过程参数的实际变化范围成为基本论域。可以通过变换系数(量化因子)实现由基本论域到指定论域的变换。模糊化的第二个任务是求得输入对应语言变量的隶属度。语言变量的隶属函数有两种表示方式,即离散方式和连续方式。离散方式是指去论域中的离散点(整数值)及这些点的隶属度来描述一个语言变量。精确量的模糊化一般有两种方法: (1)精确量的离散化

23、。如把在-3,3之间变化的连续量分为七个档次,每一档对应一个模糊集,这样处理使模糊化过程简单。否则,将每一精确量对应一个模糊子集,有无穷多个模糊子集,使模糊化过程复杂化。在-3,3区间的离散化了的精确量与表示模糊语言的模糊量建立了关系,这样就可以将-3,3之间的任意的精确量用模糊量Y来表示,例如在-3附近称为负大,用NB表示,在-2附近称为负中,用NM表示。实际上的输入变量(如误差和误差的变化等)都是连续变化的量,通过模糊化处理,把连续量离散为-3,3之间有限个整数值的做法是为了使模糊推理合成方便。(2)第二种方法,是将在某区间的精确量x模糊化成这样的一个模糊子集,它在点x处隶属度为1,除x点

24、外其余各点的隶属度均取0。尽管上述两种模糊化方法还是比较粗略的,但是人脑在进行这一转化过程时同样也是不精确的。2、模糊控制算法的设计模糊控制算法,又称模糊控制规则,实质上是将操作者在控制过程中的实践经验(即手动控制策略)加以总结而得到的一条条模糊条件语句的集合,它是模糊控制器的核心。设计中人们习惯性地选取误差(E=Y-R),或者误差E和误差变化率(EC=dE/dt),或者误差E和误差的和S作为模糊控制器的输入变量,而把控制量U或者控制量的变化U作为模糊控制器的输出变量。控制规则的设计是设计模糊控制器的关键,一般包括三部分设计内容:选择描述输入、输出变量的词集,定义各模糊变量的模糊子集及建立模糊

25、控制器的控制规则。(1)选择描述输入和输出变量的词集。模糊控制器的控制规则表现为一组模糊条件语句,在条件语句中描述输入输出变量状态的一些词汇(如“正大”、“负小”等)的集合,称为这些变量的词集(亦可以称为变量的模糊状态)。选择较多的词汇描述输入、输出变量,可以使制定控制规则方便,但是控制规则相应变得复杂;选择词汇过少,使得描述变量变得粗糙,导致控制器的性能变坏。一般情况下都选择七个词汇,但也可以根据实际系统需要选择三个或五个语言变量。针对被控对象,改善模糊控制结果的目的之一是尽量减小稳态误差。因此,对应于控制器输入(误差、误差的变化率)之一的误差采用:(负大,负中,负小,零,正小,正中,正大)

26、用英文字头缩写为:NB,NM,NS,ZO,PS,PM,PB另一个输入误差的变化率及控制器的输出采用:(负大,负中,负小,零,正小,正中,正大)用英文字头缩写为:NB,NM,NS,Z0,PS,PM,PB(2)定义各模糊变量的模糊子集。定义一个模糊子集,实际上就是要确定模糊子集隶属函数曲线的形状。将确定的隶属函数曲线离散化,就得到了有限个点上的隶属度,便构成了一个相应的模糊变量的模糊子集。理论研究显示,在众多隶属函数曲线中,用正态型模糊变量来描述人进行控制活动时的模糊概念是适宜的。但在实际的工程中,机器对于正态型分布的模糊变量的运算是相当复杂和缓慢的,而三角型分布的模糊变量的运算简单、迅速。因此,

27、控制系统的众多控制器一般采用计算相对简单,控制效果迅速的三角型分布。(3)建立模糊控制器的控制规则。模糊控制器的控制规则是基于手动控制策略,而手动控制策略又是人们通过学习、试验以及长期经验积累而逐渐形成的,存储在操作者头脑中的一种技术知识集合。手动控制过程一般是通过对被控对象(过程)的一些观测,操作者再根据已有的经验和技术知识,进行综合分析并做出控制决策,调整加到被控对象的控制作用,从而使系统达到预期的目标。手动控制的作用同自动控制系统中的控制器的作用是基本相同的,所不同的是手动控制决策是基于操作系统经验和技术知识,而控制器的控制决策是基于某种控制算法的数值运算。利用模糊集合理论和语言变量的概

28、念,可以把利用语言归纳的手动控制策略上升为数值运算,于是可以采用微型计算机完成这个任务以代替人的手动控制,实现所谓的模糊自动控制。模糊控制表一般由两种方法获得,一种是采用离线算法,以模糊数学为基础进行合成推理,根据采样得到的误差e、误差的变化ec,计算出相应的控制量变化。另一种是以操作人员的经验为依据,由人工经验总结得到模糊控制表。然而这种模糊控制表是非常粗糙的,引起粗糙的原因,是确定模糊子集时,完全靠人的主观而定,不一定符合实际情况,在线控制时有必要对模糊控制表进行在线修正。 由于e的模糊分割数是7,ec的模糊分割数也是7。我们建立的模糊系统共包括49条规则。所表示的规则依次为:如果E是NB

29、 and EC是NB则U是NB:如果E是NB and EC是NM则U是NB:如果E是NB and EC是NS则U是NM :如果E是PB and EC是PM则U是PM:如果E是PB and EC是PB则U是PB在View菜单中选择Rules命令,可以查看模糊推理规则。3、输出量的反模糊化以两个输入、一个输出的控制器为例,建立模糊控制规则,第i条规则如下:Ri:如果x是Ai且y是Bi,则z是Ci其中Ai、Bi分别是输入变量x、y的模糊子集。Ci是输出变量z的模糊子集。设已知模糊控制器的输入模糊量x是A且y是B,则根据模糊控制规则进行近似推理,可以得到模糊量z(用模糊集合C表示)为C=(Aand B

30、)RR=NI=1RiRi=(AiandBi)Ci运算“and”通常采用求交(取小)或者求积(代数积)的方法;合成运算“”通常采用最大-最小或最大-积(代数积)的方法;蕴含运算“”通常采用求交或求积的方法。具体运算可参照前面模糊数学的基础部分。以上通过模糊推理得到的是模糊量,而对于实际的控制规则必须为清晰量(精确量),因此需要将模糊量转换为清晰量,也即输出量的反模糊化。输出量的反模糊化计算通常有一下三种方法:最大隶属度判决法最大隶属度判决法遵循的原则是:在输出模糊集合中选取隶属度最大的论域元素进行输出,如果在多个论域元素上同时出现多个隶属度最大值,则取其平均结果。这种方法简单易行,实时性好,并突

31、出了隶属度最大元素的控制作用,但对隶属度较小元素的控制作用没有考虑,一次利用的信息少。取中位数判决法取中位数判决法的原则是:充分利用输出模糊集合所包含的信息,利用数学方法将描述输出模糊集合的隶属函数曲线与横坐标围成的面积的均分点对应的论域元素作为判决结果。这种方法比较充分的利用了模糊子集提供的信息量,但是计算时比较繁琐,而且缺乏对隶属度较大元素提供主导信息的充分重视,因此这种方法在实际中受到限制。重心算法重心算法,又称加权平均法,即针对论域中的每个元素zi(i=1,2,3,,n)作为待判决输出量z模糊集合C的隶属度u(x)加权系数,再计算乘积ziuC(zi)(i=1,2,3,,n)对于隶属度和

32、的平均值z0,即z0=则z0为所求的判决结果。因为z0是隶属函数曲线uC(zi)与横坐标x围成的面积的重心坐标之一,重心算法由此得名。加权平均法不仅充分利用了模糊子集提供的信息量,而且根据其隶属度值确定其提供信息的大小,因此加权平均法的应用最为普通。第4章 模糊PID控制器4.1 PID的概述PID的发展过程,很大程度上是它的参数整定方法和参数自适应方法的研究过程。自ziegler和Nichols提出PID参数整定方法起,有许多技术已经被用于PID控制器的手动和自动整定。PID控制是迄今为止最通用的控制方法。大多数反馈控制用该方法或其较小的变形来控制。PID调节器及其改进型是在工业过程控制中最

33、常见的控制器(至今在全世界过程控制中用的84%仍是纯 PID 调节器,若改进型包含在内则超过90%)。4.2 PID 控制的基本理论PID控制器是一种比例、积分、微分并联控制器。它是最广泛应用的一种控制器。PID控制器的数学模型可以用下式表示: (4.1)其中:u(t)一控制器的输出e(t)一控制器输入,它是给定值和被控对象输出值的差,称偏差信号。Kp一控制器的比例系数。Ti一控制器的积分时间。Td一控制器的微分时间。在PID控制器中,它的数学模型由比例、积分、微分三部分组成。这三部分别是: (1)比例部分比例部分数学式表示如下: (4.2)偏差一旦产生,控制器立即有控制作用,使控制量朝着减小

34、偏差的方向变化,控制作用强弱取决于比例系数Kp,Kp越大,则过渡过程越短,控制结果的稳态误差也越小;但Kp越大,超调量也越大,越容易产生振荡,导致动态性能变坏,甚至会使闭环系统不稳定。故而,比例系数Kp,选择必须适当,才能取得过渡时间少、稳态误差小而又稳定的效果。(2)积分部分积分部分数学表达式表示如下: (4.3)从积分部分的数学表达式可以知道,只要存在偏差,则它的控制作用就会不断地积累,输出控制量以消除偏差。可见,积分部分的作用可以消除系统的偏差。可是积分作用具有滞后特性,积分控制作用太强会使系统超调加大,控制的动态性能变差,甚至会使闭环系统不稳定。积分时间Ti对积分部分的作用影响极大。当

35、Ti较大时,则积分作用较弱,这时,有利于系统减小超调,过渡过程不易产生振荡。但是消除误差所需时间较长。当Ti较小时,则积分作用较强。这时系统过渡过程中有可能产生振荡,消除误差所需的时间较短。(3)微分部分微分部分数学表达式表示如下: (4.4)微分控制得出偏差的变化趋势,增大微分控制作用可加快系统响应,减小超调量,克服振荡,提高系统的稳定性,但使系统抑制干扰的能力降低。微分部分的作用强弱由微分时间Td决定。Td越大,则它抑制e(t)变化的作用越强,Td越小,它反抗e(t)变化的作用越弱。它对系统的稳定性有很大的影响。在计算机直接数字控制系统中,控制器是通过计算机PID控制算法程序实现的。PID

36、计算机直接数字控制系统大多数是采样数据控制系统。进入计算机的连续时间信号,必须经过采样和整量化后,变成数字量,方能进入计算机的存贮器和寄存器,而在数字计算机中的计算和处理,不论是积分还是微分,只能用数值计算去逼近。在数字计算机中,PID控制规律的实现,也必须用数值逼近的方法。当采样周期相当短时,用求和代替积分,用差商代替微商,使 PID 算法离散化,将描述连续时间 PID算法的微分方程,变为描述离散时间 PID 算法的差分方程,即为数字PID 位置型控制算式,如下式(4.5): (4.5)式中:u(k)一 k 采样周期时的输出e(k)一 k 采样周期时的偏差Ts一采样周期 即有 (4.6)其中

37、Kp、KI、KD分别为比例、积分、微分系数4.3 模糊 PID 控制常规的二维模糊控制器是以偏差和偏差变化作为输入变量,因此,一般认为这种控制器具有 Fuzzy 比例和微分控制作用,而缺少 Fuzzy 积分控制作用,众所周知,在线性控制理论中,积分控制作用能消除稳态误差,但动态响应慢;比例控制作用动态响应快;而比例积分控制作用既能获得较高的稳态精度,又能具有较快的动态响应。故把 PI(PID)控制策略引入模糊控制器,构成 Fuzzy-PI(或 PID)复合控制,使动静态性能都得到很好的改善,即达到动态响应快,超调小、稳态误差小。模糊控制和PID控制结合的形式有多种:(1)模糊-PID 复合控制

38、:控制策略是:在大偏差范围内,即偏差 e 在某个阈值之外时采用模糊控制,以获得良好的瞬态性能;在小偏差范围内,即 e 落到阈值之内时转换成 PID(或 PI)控制,以获得良好的稳态性能。二者的转换阈值由微机程序根据事先给定的偏差范围自动实现。常用的是模糊控制和 PI 控制两种控制模式相结合的控制方法称之为 Fuzzy-PI 双模控制。(2)比例-模糊-PI 控制:当偏差 e 大于某个阈值时,用比例控制,以提高系统响应速度,加快响应过程;当偏差 e 减小到阈值以下时,切换转入模糊控制,以提高系统的阻尼性能,减小响应过程中的超调。在该方法中,模糊控制的论域仅是整个论域的一部分,这就相当于模糊控制论

39、域被压缩,等效于语言变量的语言值即分档数增加,提高了灵敏度和控制精度。但是模糊控制没有积分环节,必然存在稳态误差,即可能在平衡点附近出现小振幅的振荡现象。故在接近稳态点时切换成 PI 控制,一般都选在偏差语言变量的语言值为零时,(这时绝对误差实际上并不一定为零)切换至 PI 控制。(3) 模糊-积分混合控制:将常规积分控制器和模糊控制器并联构成的。(4)参数模糊自整定 PID 控制:PID控制的关键是确定PID参数,该方法是用模糊控制来确定PID参数的,也就是根据系统偏差e和偏差变化率ec,用模糊控制规则在线对PID参数进行修改。其实现思想是先找出PID各个参数与偏差e和偏差变化率ec之间的模

40、糊关系,在运行中通过不断检测e和ec,在根据模糊控制原理来对各个参数进行在线修改,以满足在不同e和ec时对控制参数的不同要求,使控制对象具有良好的动、静态性能,且计算量小,易于用单片机实现。其原理框图如图4.1所示: 图4.1 PID参数模糊自整定系统结构图第5章 基于模糊PID的智能温度控制及仿真5.1 电加热炉温度Fuzzy-PID控制算法以电加热炉的温度控制为例。对于电加热炉这样的具有较大滞后性、非线性、时变性的控制对象,单纯采用PID控制或者模糊控制都不会取得较好的控制效果。大量的理论研究和工程实践也充分证明了这一点。而采用Fuzzy-PID复合控制方式控制电加热炉温度不失为一种比较好的解决方法。它能发挥模糊控制鲁棒性强

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论