版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高二文科数学立体几何大题训练试题1(本小题满分14分)BAEDCF如图的几何体中,平面,平面,为等边三角形, ,为的中点(1)求证:平面;(2)求证:平面平面。(第2题图)2(本小题满分14分) GkStK如图,AB为圆O的直径,点E、F在圆O上,ABEF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且,.(1)求证:平面;(2)设FC的中点为M,求证:平面;(3)求三棱锥FCBE的体积.3.(本小题满分14分)ABCDFE如图所示,正方形与直角梯形所在平面互相垂直,.()求证:平面;()求四面体的体积.4A1B1C1D1ABCDE如图,长方体中,,是的中点.()求证:直线平面;()求证:
2、平面平面;()求三棱锥的体积.5(本题满分14分)如图,己知中,且 (1)求证:不论为何值,总有 (2)若求三棱锥的体积6.(本小题满分13分)如图,已知三棱锥ABPC中,APPC,ACBC,M为AB的中点,D为PB的中点,且PMB为正三角形(1)求证:DM平面APC;(2)求证: BC平面APC;(3)若BC4,AB20,求三棱锥DBCM的体积7、(本小题满分14分)如图1,在直角梯形中,.将沿折起,使平面平面,得到几何体,如图2所示.ABCD图2BACD图1(1) 求证:平面;(2) 求几何体的体积.8、(本小题满分14分)已知四棱锥 (图5) 的三视图如图6所示,为正三角形,垂直底面,俯
3、视图是直角梯形(1)求正视图的面积;(2)求四棱锥的体积;(3)求证:平面;参考答案BAEDCFG1(本小题满分14分)(1)证明:取的中点,连结为的中点,且平面,平面, , 又, 3分四边形为平行四边形,则5分平面,平面, 平面7分(2)证明:为等边三角形,为的中点,9分 平面,10分又,平面12分,平面13分平面, 平面平面14分2解:(1)平面平面,,平面平面,平面, 平面,2分又为圆的直径, 平面. 4分(2)设的中点为,则,又,则,四边形为平行四边形, ,又平面,平面,平面. 8分(3)面,到的距离等于到的距离,过点作于,连结、,为正三角形,为正的高,11分 12分 。14分3、()
4、证明:设,取中点,连结,所以, 2分 因为,所以, 从而四边形是平行四边形,. 4分ABCDFE因为平面,平面, 所以平面,即平面 7分 ()解:因为平面平面,,所以平面. 10分 因为,,所以的面积为, 12分 所以四面体的体积. 14分 4、()证明:在长方体中, ,又 平面,平面 直线平面 4分()证明:在长方形中,故,6分在长方形中有平面,平面, , 7分 又,直线平面,8分而平面,所以平面平面. 10分() .14分5(1)证明:因为AB平面BCD,所以ABCD,又在BCD中,BCD = 900,所以,BCCD,又ABBCB,所以,CD平面ABC, 3分又在ACD,E、F分别是AC、
5、AD上的动点,且 所以,不论为何值,EF/CD,总有EF平面ABC: 7分(2)解:在BCD中,BCD = 900,BCCD1,所以,BD,又AB平面BCD,所以,ABBD,又在RtABD中,AB=BDtan。 10分 由(1)知EF平面ABE,所以,三棱锥ABCD的体积是 14分6、解: (1)由已知得,MD是ABP的中位线,所以MDAP.(2分)因为MD平面APC,AP平面APC,所以MD平面APC.(4分)(2)因为PMB为正三角形,D为PB的中点,所以MDPB,(5分)所以APPB.(6分) 又因为APPC,且PBPCP,所以AP平面PBC.(7分)因为BC平面PBC,所以APBC.又
6、因为BCAC,且ACAPA,所以BC平面APC.(10分) (3)因为MD平面PBC,所以MD是三棱锥MDBC的高,且MD5,又在直角三角形PCB中,由PB10,BC4,可得PC2.(11分)于是SBCDSBCP2,(12分)所以VDBCMVMDBCSh10.(13分)7 解:()在图1中,可得,从而,故取中点连结,则,又面面,面面,面,从而平面, 4分 又,平面 8分另解:在图1中,可得,从而,故面ACD面,面ACD面,面,从而平面() 由()可知为三棱锥的高. , 11分所以 13分由等积性可知几何体的体积为 14分8解:(1)过A作,根据三视图可知,E是BC的中点, (1 分)且, (2 分)又为正三角形,且 (3 分)平面,平面, (4 分),即 (5 分)正视图的面积为 (6 分)(2)由(1)可知,四棱锥的高, (7 分)底面积为 (8分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学门卫招聘流程
- 办公室设计施工一体化合同范本
- 网络安全招投标投诉处理规范
- 石材加工招投标监督技巧
- 内部通讯稿收发规定
- 船只租赁终止协议范本
- 矿区安全围墙施工合同
- 养老机构财务危机应对策略
- 建筑行业货款回收措施
- 电力工程安全生产培训管理办法
- 职业健康安全培训课件(共32张课件)
- 2024年07月首都博物馆2024年招考17名合同制用工人员笔试近年2018-2023典型考题及考点剖析附答案带详解
- 2024CSCO结直肠癌诊疗指南解读
- 大学生毕业论文写作教程(高校毕业生论文写作指课程导)全套教学课件
- (正式版)QBT 2174-2024 不锈钢厨具
- 监控维修施工方案
- 是谁杀死了周日
- 2024年辽宁铁道职业技术学院高职单招(英语/数学/语文)笔试历年参考题库含答案解析
- 主播艺人入职面试信息登记表
- 2023年学习兴税(网络信息)知识考试复习题库(含答案)
- 艺术设计专业人才需求报告
评论
0/150
提交评论