SARS传播的数学模型_第1页
SARS传播的数学模型_第2页
SARS传播的数学模型_第3页
SARS传播的数学模型_第4页
SARS传播的数学模型_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、SARS传播的数学模型摘 要通过对题目附件1的SARS模型进行分析和评价,加深了对SARS的认识和了解。根据传染病的传播特点,建立了关于SARS病人率和疑似病人率两个常微分方程模型。以所给数据为基本依据,用Matlab软件进行数值计算,与图形模拟方法求得模型中的有关参数。当1 =1.5 和2 =1时,理论图形与实际图形有良好的吻合,分别得到了SARS病人率和疑似病人率比较符合实际数据的变化图,能正确地预测它们的发展趋势。他们对于模型中的参数有非常强的灵感性,1的值作微小的改变对于整个疫情的发展有很大的影响,所以政府采取对SARS疫情的有关措施是完全正确的。本文重点分析了关于SARS病人率的模型

2、一,根据求得的参数,利用相轨线理论对结果加以分析并对整个疫情作出预测,并推论出SARS病人率关于t的表达式i(t),然后提出了对传染病的控制方案,同时列举了具体方法,并论证了方法的合理性和可行性,用其它地区的数据对模型进行检验,说明模型的参数有区域性。关键词:SARS 微分方程 曲线拟合 数学模型 相轨线一 、问题的提出SARS俗称非典型肺炎,是21世纪第一个在世界范围内传播的传染病。我国作为发展中大国深受其害:SARS的爆发和蔓延给我国的经济发展和人民生活带来了很大影响。在党和政府的统一领导下,全国人民与SARS顽强抗争,取得了可喜的阶段性胜利,并从中得到了许多重要的经验和教训,认识到在没有

3、找出真正病因和有效治愈方法前,政府采取的强制性政策对抑制SARS自然发展最有效办法。而本题的目的就是要建立一个适当的模型对SARS传播规律进行定量地分析、研究,为预测和控制SARS蔓延提供可靠、足够的信息,无论对现在还是将来都有其重要的现实意义。二 、模型的假设1 地总人数N可视为常数,即流入人口等于流出人口。2 据人口所处的健康状态,将人群分为:健康者,SARS病人,退出者(被治愈者、 免疫者和死亡者)。 3在政府的强制措施下,人口基本不流动,故无病源的流入和流出,避免了交叉感染,降低了感染基数。4 隔离的人断绝了与外界的联系,不具有传染性。5 SARS康复者二度感染的概率为0。6 国家完善

4、了监控手段,加强了对SARS病毒监控的力度,故可假设所有感染SARS病毒的人群都进入了SARS病人类和疑似类。7 由于对SARS病原体的研究不够深入,无有效药物可以使人体免疫,同时SARS病毒感染后,大量繁殖,破坏免疫系统,故不可免疫。 三、模型的建立(一) 参数的设定和符号说明s(t):t时刻健康者在总体人群中的比例i(t):t时刻SARS病人在总体人群中的比例l(t):t时刻疑似病人在总体人群中的比例r(t):t时刻被治愈者、死亡者和免疫者在总体人群中的比例之和。 :SARS病人日接触率。为每个病人每天有效接触(足以使健康者受感染变为病人)的平均人数。:日治愈率。为每天被治愈的病人占病人总

5、数的比例。:日转化率。为每天危险群体中的疑似病人被确诊为SARS患者的比例。:日死亡率。为每天SARS病人死亡的数量和当天病人总数量的比值。:疑似感染率。为每天感染为疑似病人的比例。(二)模型建立模型一 感染为SARS患者情况由假设,每个病人每天可使个健康者变为病人,因为病人人数为,所以每天共有个健康者被感染,于是就是病人数的增加率,又因为每天被治愈率为,死亡率为,所以每天有个病人被治愈,有个病人死亡。那么病人的感染为由于 对于退出者 () 由假设可知: 故SARS患者率模型一的方程建立如下: (3) 模型二 疑似患者的变化情况与前面同样的分析,得到疑似患者率模型二: (5)四、模型求解(一)

6、参数的确定和分析:1.的确定 =, =, =用EXCEL电子表格处理题目附件2中所给数据得: =0.055076,=0.038183,=0.002443。(处理数据见附件)2的确定确定 很明显从我们建立的模型是无法得到s、i、的解析解。为了解决这个问题我们用MATLAB软件中龙格库塔方法求出他们的数值解。先通过实际统计数据算出每一天的s、i、做出它们与时间的函数图象图1,然后我们再对取一组数,分别画出由通过模型解出的数值解随时间变化的图象图2,将这组图象与由实际数据所得图象相比较,调试。我们发现当1.5时,理论图形与实际图形有最佳的吻合。图形如下:<图1>:根据实际数据拟合的图象(

7、画图程序见附件)<图2>通过数值解作出的关于时间t 的变化(画图程序见附件)分析两个图形可知,它们的高峰期、缓解期和平稳期曲线相当符合,具有相同的发展趋势。但是在0,10的SARS初期范围内,曲线变化不相同。这主要是因为在4月24日之前,没有相关数据的统计和报道,由于数据的不全,根据边界值画出来的曲线与通过数值解得到的曲线相比较,不能准确反映SARS产生初期时的趋势,所以边界值应该去掉,而通过数值解模拟的曲线可以得到之前的发展趋势。并且通过对SARS蔓延期特点的分析,<图2>在符合所给数据反映的规律基础上,还能够模拟缺乏数据的SARS初始状态,所以曲线是合理的。(2)确

8、定与确定时类似,先根据实际数据画出图形<图3>实际数据图形然后再对取一组数,分别画出通过模型解出的数值解随时间变化的图象,将这组图象与由实际数据所得图象相比较,调试。发现当1.0时,理论图形与实际图形有最佳的吻合。图形如下:<图4>在0,10的初期范围内,曲线趋势不同,原因同前。整个曲线反映了疑似患者在SARS的过程中的变化规律。五、结果分析与检验(一)讨论 的性质平面称为相平面,相轨线在相平面上的定义域为从模型(一)中消去,利用的定义,可得 (6)由(6)式解得 (7)(二)对于合理确定的,我们可以画出图,图形如下:<图5>(画图程序见附件由于在这个SAR

9、S病毒发展过程中,是变化的,故可以画出取不同值时的图形,如下取0.4192,0.2858、0.1858时的图形。<图6>分析(3)式和(7)式,可知:1 不论初始条件,如何,病人终会消失,即SARS最终会被消灭,亦即。证明省略。从图形上看,相轨线终将与s轴相交(t充分大)。2 设最终未被感染的健康者的比例是,在(7)式中令得到方程 (8)是(8)在(0,1/)内的根,在图形上是相轨线与s轴在(0,1/)内交点的横坐标。对于确定下来的=0.0383,可以代入(8)式解出03 SARS疾病传染过程分析整个传染过程,随着政府和公众对SARS的重视程度的变化,可知接触数随着治愈率、死亡率和

10、接触率的不断变化而变化。(1)在SARS爆发的初期,由于潜伏期的存在,社会对SARS病毒传播的速度和危害程度认识不够,所以政府和公众没有引起重视。治愈率和死亡率很小,而接触率相对较大,所以很小。当,则开始增加,可认为是疾病蔓延阶段。(2)当=时,达到最大值 (9)对于我们确定的,可以求出0.8368,可认为是疾病传染到达了高峰期。(3)当<时,单调减小至零,单调减小至。这一时期病人比例绝不会增加,传染病不会蔓延,进入缓解期。4群体免疫和预防根据对模型的分析,当是传染病不会蔓延。所以为制止蔓延,除了提高卫生和医疗水平,使阈值1/变大以外,另一个途径是降低,这可以通过预防接种使群体免疫。第二

11、个途径通过预防接种使群众免疫,免疫后就不会被感染上病毒。按照我们人群的分类系统,将免疫人群归为退出者类,所以免疫人群的出现,不与模型的分类系统相矛盾。忽略病人比例的初始值,有=1-,于是SARS不再蔓延的条件可以表示为: (10)所以只要通过群体免疫使初始时刻的移出者比例满足(10),就可以制止SARS的蔓延。5数值验证与估量根据上面的分析,阻止SARS蔓延有两种手段,一是提高卫生水平和医疗水平,即降低日接触率,提高日治愈率,二是群体免疫,即提高移出者比例的初值。我们以最终未感染的健康者的比例和病人比例达到最大值,作为传染病蔓延程度的度量指标。给定不同的,用()式计算,用(9)式计算1.00.

12、30.30.980.020.03980.34490.60.30.50.980.020.19650.16350.50.51.00.980.020.81220.02000.40.51.250.980.020.91720.02001.00.30.30.700.020.08400.16850.60.30.50.700.020.30560.05180.50.51.00.700.020.65280.02000.40.51.250.700.020.67550.0200从计算得到的和可以看出:(1)对于一定的,降低,提高,使阈值1/变大,会使变大,变小。于是验证了群体免疫和预防中提出的提高卫生水平和医疗水平,

13、可以使SARS最终的患者比例缩小,健康群体增加。(2)对于一定的,提高 ,会使变大,变小。所以实行群体免疫,降低受感染的基数,可以有效地减缓SARS蔓延的速度。在(8)式中略去很小的,即有 (11)6模型验证首先,由方程(1)和(3)可以得到 (12) (13)当时,取(13)式右端Taylor展开的前三项,在初始值下的解为 (14)其中,从(14)式算出 (15)将(14)代入(12),再将(12)代入(7),得到(其中,)对于表达式中的参数,已通过前面的参数分析得出,代入表达式,就可以对t时的患病率做预测,达到了预测的目的,满足题目的要求。7对卫生部措施的评估在模型中,的取值大小能充分反映

14、接触率的变化。若采取的隔离措施提前T天,那么将相应减小,反之则增加。不妨将的值取为1.3和1.7,作出相应的图形7和图8。图7图8由以上图形可见,T对SARS病人的增长有显著影响,因此,卫生部采取的提前或延后5天的隔离措施有其数学背景和科学依据。至于到底提前或延后几天最好,还有待进一步研究。六、模型评价及改进 1、评价模型首先根据所给数据的分析,采用微分方程建立两个模型,分设变量。再通过统计数据与数据拟和求得各自的参数值,利用数值计算得到结果并加以分析,得出传染病的传染规律,最后根据此分析提出对传染病预测与控制的方案。模型采用了数值计算,图形观察与理论分析相结合的方法,先有感性认识,再用相轨线

15、做理论分析,最后进行数值验证和估算,可以看作计算机技术与建模的配合。模型采用微分方程本身就有一定的缺限,其计算结果的准确性、可靠性将受到限制,再加之数值解的不确定性,模型对长时间的预测有它的局限性。因时间限制模型没能更多考虑交叉分类进行。2、改进 若能建立以随机偏微分方程组为基础的数学模型,将大大提高计算的准确性与可靠性,使得预测更加准确,但这样做将遇到模型求解,数据准确收集和数值求解的不精确性等诸多困难。 七、对附件1模型的评价1、 合理性该模型的基本假设符合事实,对照解得的结果与实际病例数据也相当吻合,所以该模型基本是合理的。具体表现:模型中的参数K(平均每病人每天可传染K个人)、L(平均

16、每个病人可以直接感染他人的时间为L天)的确定是由已公布的数据统计计算和数据拟合得来,具有一定的可靠性。特别是对K的分段处理,反映了传染病的许多特性,同时也反应了社会的警觉程度、政府和公众采取的措施反过来也会影响K值。但是该模型建立得较为粗糙,它没有考虑疑似病例患者和已治愈病人的情况。因此为使建立的模型更准确,更符合实际,考虑将该模型优化的方向是把疑似病例患者和治愈患者加入到模型中。2、实用性模型对北京地区中期的计算值与实际值基本吻合,说明该模型有一定的实用性。但对后期预测与后来的实际情况却有一定差距,同时该模型中K值是从香港和广州两地实际情况统计处理得来,而实际上,各地区的政策及人们生活习惯各

17、有所不同,因此用一个地区所获得的参数去预测另一地区,其结果只具有参考性,而不具备很强的可靠性。所以该模型的实用性有一定局限。八、SARS对北京旅游人数影响的经济模型年1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月19971998199920002001200220039.4 11.3 16.8 19.8 20.3 18.8 20.9 24.9 24.7 24.3 19.4 18.69.6 11.7 15.8 19.9 19.5 17.8 17.8 23.3 21.4 24.5 20.1 15.910.1 12.9 17.7 21.0 21.0 20.4 21.9

18、25.8 29.3 29.8 23.6 16.511.4 26.0 19.6 25.9 27.6 24.3 23.0 27.8 27.3 28.5 32.8 18.511.5 26.4 20.4 26.1 28.9 28.0 25.2 30.8 28.7 28.1 22.2 20.713.7 29.7 23.1 28.9 29.0 27.4 26.0 32.2 31.4 32.6 29.2 22.915.4 17.1 23.5 11.6 1.78 2.61 8.8 16.2依据上表的统计数据,我们分别建立回归模型对各个月的游客数量进行预测。由MATLAB统计工具箱中的回归分析命令,编程可解得:

19、若没有受SARS冲击,2003年1月到12月游客将达到的数量。再用当月实际游客量变化所呈现的规律对9月到12月进行预测,最后分别模拟作出受到SARS冲击前后的游客量随时间的变化趋势图。具体求法如下:我们记1997年为开始记为t=0,那么2003年就可表示成t=6。将年份用矩阵表示为:t=0,1,2,3,4,5,;每年1月的游客量用矩阵表示为:y=9.4,9.6,10.1 ,11.4 ,11.5 ,13.7MATLAB命令:p,S=polyfit(t,y,2) %二次多项式回归 y=polyval(p,6) %计算出t=6,即2003年一月的预测量计算得y=15.2000,再用同样方法求得200

20、3年2月到12月的预测数量依次为36.4700、25.9700、32.1500、32.8300、31.6000 、29.3300、36.4000、33.1400、32.8500、26.8500、27.7900。由命令函数:Y=polyconf(p,t,2)和plot(t,y,t,Y) 作出如下曲线图9再由2003年各月实际量推算出9月到12月的游客量分别为15.4127 、20.1860 、26.1721 、33.3709。同样我们作出图10为便于直观分析我们将两组数据所作出的图形移到图11中:模型分析:从图中我们可以看到,1月份实际游客量与预测数据较吻合,因为SARS刚出现,没有引起人们重视

21、;而以后各月差值先逐渐增大,到6月份后又开始渐渐缩小,这是因为SARS疫情逐渐攀升到六月份达到高峰后渐渐的得到有效控制。人们在这段时期内的出行受到SARS的影响,所以在2月到6月游客量不断的大量减少,但是随着SARS疫情得到控制,以及公共卫生系统的进一步完善,人们生活又渐渐的恢复到SARS前的一般规律,在图形中反映为6月中下旬,随着抗击SARS取得初步成效,游客量开始逐步增加,旅游业也重新回升到常态。但是由于用以预测未知量的已知量较少,我们为了使得预测值真实可信,只考虑预测到11月份,这样做同时还因为时间越长要考虑的不定因素也就越多。从模型及模型分析说明我们所预测的数据是基本合理、符合实际的。

22、九、参考文献1 姜启源等,数学模型(第三版),北京;高等教育出版社,2003.82 李海涛等,MATLAB 6.1 基础及应用技巧,北京;国防工业出版社,2002.33 赵静等,数学建模与数学实验,北京;高等教育出版社,2002.94 王沫然,MATLAB 5.X与科学计算,北京;清华大学出版社,2000.55 幺焕民等,数学建模,哈尔滨;哈尔滨工业大学出版社,2003.4短文SARS与数学模型2003年春天,SARS这一突发疫情袭击了世界上20多个国家和地区,给全球经济的发展以及人们的正常生活等带来了很大的影响,在经过与SARS几个回合的较量之后,我们终于赢了。当SARS正在慢慢淡出我们身边

23、,我们的工作和生活渐渐回归正常时,那曾经经历的恐惧、困扰、焦虑、无奈和痛苦,那曾深深击中过我们软肋,使我们的弱点暴露无遗的SARS将会成为烙在我们心灵上一块永远抹不去的印。不过,令人欣慰的是我们并没有被击倒,尤其是我们的白衣天使们,他们在与SARS的较量中,充分展现了职业道德和人性的光辉,书写出了最壮丽的人生篇章。     现在这个时刻,我们有必要梳理和总结过去的日子,将我们对SARS、对病毒、对疾病、对危机的认识、责任以及处理方法推向前进。因为我们将不得不面对将有可能和SARS共存相当长时间的现实。在我们还不能完全认识它、战胜它并最终消灭它时,我们必须

24、时刻警觉,将SARS对我们的侵害降低到最小。使得若当它卷土重来时,我们能够聚集起更强大的力量,快速而从容地与它过招。我们都知道SARS的传播,在没能找到真正的药物治疗方法前,只能依靠政府采取强制性政策去预防、控制疫情。人类对传染病的研究长期以来还都只是通过不断的试验来获取数据,而且相关试验只能在动物身上做,而不可能在活人体上做类似试验,另外有关传染病的数据也只能从爆发后的相关报道与文字材料中获得,不但不能快速得到信息,连其数据的全面性都很难达到。因而,在对传染病流行的控制研究问题上,迫切需要有一种行之有效、简便易行的办法来代替它。而数学模型恰恰是通过采用数学基础工具以及计算机模拟等手段从非医学

25、中的病理分析研究角度去进行科学描述,所以我们可以根据以前总结的一些经验和统计的实际数据,从数学角度建立SARS传染病模型,通过科学、合理的分析和推论,提供足够的可靠数据、信息给政府用以制定相关政策。这是一项艰巨的任务,不但需要我们的努力,也更需政府和媒体的大力支持。附件已确诊病例累计现有疑似病例死亡累计治愈出院累计当天退出数当天病人数当天病例退出率治愈率3394021833174310.0394430.076566482610254365200.0115380.0826925886662846166190.0258480.0743136937823555136840.0190060.08040

26、97748633964127740.0155040.082687877954427398730.0103090.0836298810934876109900.0101010.076768111412555678310650.0028170.0732391199127559781212100.0099170.0644631347135866831612910.0123930.0642911440140875901713880.0122480.06484115531415821001814540.012380.06877616361468911091115410.0071380.070733174

27、1149396115715920.0043970.07223618031537100118616790.0035740.07028189715101031211717360.0097930.0697196015231071341018080.0055310.074115204915141101411318850.0068970.074801213614861121521819130.0094090.07945621771425114168919450.0046270.086375222713971161751519740.0075990.088652226514111201863119980.

28、0155160.093093230413781292084120100.0203980.103483234713381342441319920.0065260.1224923701308139252619970.0030050.126189238813171402571720080.0084660.127988240512651412733820060.0189430.136092242012501453072719820.0136230.154894243412501473322019580.0102150.169561243712491503495019450.0257070.179434

29、244412251543955418950.0284960.208443244412211564478318530.0447920.24123245612051585285617790.0314780.296796246511791605828817480.0503430.332952249011341636674116690.0245660.399641249911051677044416330.0269440.431108250410691687478515970.0532250.467752251210051728284115140.0270810.5468962514941175866

30、6314760.0426830.58672125178031769287914160.0557910.655367252076017710068513380.0635280.7518682521747181108797512530.7781320.86751825217391902053672780.2410077.38489225217341902120352110.16587710.0473925217241912154171760.09659112.2386425217181912171181590.11320813.6540925217161912189421410.29787215.

31、524822521713191223126990.26262622.535352521550191225720730.27397330.9178125214511912277-116354-21.53742.16667252235118111243312170.0271160.92358325227118111573211840.0270270.9771962522418111897411520.0642361.0321182522318112635810780.0538031.171614252266818113218410200.0823531.2950982522257183140314

32、19360.1506411.498932252215518415431107950.1383651.940881252231841653966850.1401462.4131392522518617471985890.3361632.966044252241871944523910.1329924.971867252231891994213390.0619475.882006252231892015-575319-1.802516.3166142523218314463788940.4228191.61745252321861821565160.1085273.5290725232187187

33、6-0.289883.118497求病人变化(数值解)function y=ill(t,x)w=1.5;z=0.0575;y=w.*x(1).*x(2)-z.*x(1),-w.*x(1).*x(2)'ts=0:0.01:70;x0=402/13000000,1-402/13000000; t,x=ode45('ill',ts,x0);t,x; plot(t,x(:,1),grid,pause(按实际数据模拟)t=1:64;z= Columns 1 through 14 143 106 105 81 103 111 126 85 148 93 113 83 105 62 Columns 15 through 28 94 63 89 87 41 50 38 39 43 23 18 17 15 14 Columns 29 through 42 3 7

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论