版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、直线与双曲线的相交弦问题直线与双曲线相交的弦长公式(两点之间的距离)一、已知双曲线方程和直线方程求弦长例1、 过双曲线的左焦点,作倾斜角为的弦,求;的面积(为双曲线的右焦点)。1、求直线被双曲线截得的弦长;2、过双曲线的右焦点作倾斜角为的弦,求弦长;3、已知斜率为2的直线被双曲线截得的弦长为,求直线的方程;4、过双曲线的左焦点,作倾斜角为的直线与双曲线相交于两点,求:(1)弦长(2)的周长(为双曲线的右焦点)二、已知弦长求双曲线方程5、 已知焦点在x轴上的双曲线上一点,到双曲线两个焦点的距离分别为4和8,直线被双曲线截得的弦长为,求此双曲线的标准方程6、已知倾斜角为的直线被双曲线截得的弦长,求
2、直线的方程例2、 已知双曲线方程为,求以定点A(2,1)为中点的弦所在的直线方程解圆锥曲线与直线相交所得的中点弦问题,一般不求直线与圆锥曲线的交点坐标,而是利用根与系数的关系或“平方差法”求解此时,若已知点在双曲线的内部,则中点弦一定存在,所求出的直线可不检验,若已知点在双曲线的外部,中点弦可能存在,也可能不存在,因而对所求直线必须进行检验,以免增解,若用待定系数法时,只需求出k值对判别式>0进行验证即可例3、 双曲线方程为.问:以定点B(1,1)为中点的弦存在吗?若存在,求出其所在直线的方程;若不存在,请说明理由7、已知中心在原点,顶点在轴上,离心率为的双曲线经过点()求双曲线的方程;
3、()动直线经过的重心,与双曲线交于不同的两点,问是否存在直线使平分线段。试证明你的结论。 题型三: 9、设双曲线与直线相交于不同的点A、B.求双曲线的离心率的取值范围;设直线与轴的交点为,且,求的值。解:(1)将yx1代入双曲线y21中得(1a2)x22a2x2a20 由题设条件知,解得0<a<且a1, 又双曲线的离心率e,0<a<且a1,e>且e.(2)设A(x1,y1),B(x2,y2),P(0,1) , (x1,y11)(x2,y21)x1x2,x1、x2是方程的两根,且1a20, x2,x,消去x2得, a>0,a.10. 已知双曲线的焦点为,过且斜
4、率为的直线交双曲线于、两点,若 (其中为原点),求双曲线方程。11. 双曲线的中心为原点,焦点在轴上,两条渐近线分别为,经过右焦点垂直于的直线分别交于两点已知成等差数列,且与同向()求双曲线的离心率;()设被双曲线所截得的线段的长为4,求双曲线的方程解:()设, 由勾股定理可得:得:,由倍角公式,解得,则离心率()过直线方程为,与双曲线方程联立,将,代入,化简有 将数值代入,有, 解得 故所求的双曲线方程为。12、已知双曲线1(b>a>0),O为坐标原点,离心率e2,点M(,)在双曲线上(1) 求双曲线的方程;(2) 若直线l与双曲线交于P,Q两点,且.求的值解: (1)e2,c2
5、a,b2c2a23a2,双曲线方程为1,即3x2y23a2.点M(,)在双曲线上,1533a2.a24.所求双曲线的方程为1.(2)设直线OP的方程为ykx(k0),联立1,得|OP|2x2y2. 则OQ的方程为yx,同理有|OQ|2, .13(2012上海)在平面直角坐标系xOy中,已知双曲线C1:2x2y21.(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;(2)设斜率为1的直线l交C1于P、Q两点若l与圆x2y21相切,求证:OPOQ;(3)设椭圆C2:4x2y21.若M、N分别是C1、C2上的动点,且OMON,求证:O到直线MN的距离是定
6、值解:(1)双曲线C1:,左顶点A,渐近线方程为:y±x.过点A与渐近线yx平行的直线方程为,即yx1.解方程组,得. 所求三角形的面积为S|OA|y|.(2)证明:设直线PQ的方程是yxb,直线PQ与已知圆相切,1,即b22.由得x22bxb210. 设P(x1,y1)、Q(x2,y2),则又y1y2(x1b)(x2b),x1x2y1y22x1x2b(x1x2)b22(1b2)2b2b2b220. 故OPOQ.(3)证明:当直线ON垂直于x轴时,|ON|1,|OM|,则O到直线MN的距离为.当直线ON不垂直于x轴时,设直线ON的方程为ykx(显然),则直线OM的方程为yx. 由得|
7、ON|2.同理|OM|2. 设O到直线MN的距离为d.(|OM|2|ON|2)d2|OM|2|ON|2, 3,即d.综上,O到直线MN的距离是定值五、能力提升1若不论k为何值,直线y=k(x-2)+b与双曲线总有公共点,则b的取值范围是( ) (A) (B) (C) (D) 2过双曲线的右焦点F作直线交双曲线于A、B两点,若|AB|=4,则这样的直线有( ) (A)1条 (B)2条 (C)3条 (D)4条3过点的直线与双曲线有且仅有一个公共点,且这个公共点恰是双曲线的左顶点,则双曲线的实轴长等于( ) (A)2 (B)4 (C) 1或2 (D) 2或44. 已知双曲线的右焦点为F,若过点F且倾斜角为的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( ) (A) (1,2 (B)(1,2) (C) 2,+) (D) (2,+)6直线与双曲线的右支交于不同两点,则k的取值范围是 7. 已知倾斜角为的直线被双曲线截得的弦
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 不锈钢采购合同范本
- 浙江省台州市初中毕业生学业考试适应性语文试卷四套【附参考答案】
- 4-1《喜看稻菽千重浪-记首届国家最高科技奖获得者袁隆平》(说课稿)高一语文同步高效课堂(统编版 必修上册)
- 三方资产转让协议样式(2024年版)版B版
- 2024年离婚协议债务逃避处罚条款及执行细则3篇
- 2024年版采购执行代理协议模板文件版B版
- 11变废为宝有妙招《减少垃圾 变废为宝》(说课稿)-部编版道德与法治四年级上册
- 3《学会反思》(说课稿)-2023-2024学年统编版道德与法治六年级下册
- 2024年股权激励授予协议版B版
- 福建省南平市松溪县第二中学高一数学理下学期期末试卷含解析
- 宁波银行财富管理创新实践
- 沿用甲方背靠背合同协议
- 本村人购买宅基地合同
- 2024-2030年中国人工喉行业市场发展趋势与前景展望战略分析报告
- 票据法完整教学课件
- 第六单元测试卷(单元测试)-2024-2025学年语文二年级上册统编版
- JZ-7型空气制动机特点及控制关系
- 临床脑卒中后吞咽障碍患者进食护理标准
- 防范非法集资宣传打击非法集资远离金融诈骗课件
- GB/T 10781.4-2024白酒质量要求第4部分:酱香型白酒
- 酒店前台员工规章制度
评论
0/150
提交评论