版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、八年级上册期中知识点第一章 轴对称图形1.1轴对称与轴对称图形1.轴对称:把一个图形沿着某一条直线折叠,如果它能够与另外一个图形重合,称这两个图形关于这条直线对称。这条直线叫做对称轴,两个图形中的对应点叫做对称点。(对称轴是直线,所在的直线等)2.轴对称图形:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合。3.二者的区别和联系轴对称是2个分开图形(整体叫做轴对称图形),轴对称图形是1个图形(看成对称轴左右两个图形)。4.正多边形:1.有几条边就有几条对称轴。(偶数边的正多边形既是轴对称又是中心对称图形)2.成轴对称的两个图形的任何对应部分也成轴对称。1.2轴对称的性质1.垂直平分
2、线:垂直并且平分一条线段的直线。(高线,中线,角平分线都是线段)2.成轴对称的两个图形全等,且其中一个图形沿某条直线翻折后能与另一个图形重合。如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。1.4线段、角的轴对称 线段的轴对称性:1.线段是轴对称图形,对称轴是线段垂直平分线所在的直线;2.线段的垂直平分线上的点到线段两端的距离相等;3.到线段两端距离相等的点,在这条线段的垂直平分线上。结论:线段的垂直平分线是到线段两端距离相等的点的集合角的轴对称性:1.角是轴对称图形,对称轴是角平分线所在的直线。2.角平分线上的点到角的两边距离相等。3.到角的两边距离相等的点,在这个角的平分线上。结
3、论:角的平分线是到角的两边距离相等的点的集合lABM1.5等腰三角形的轴对称 1.等腰三角形定义:有两边相等的三角形为等腰三角形性质:1.等腰三角形为轴对称图形,对称轴为顶角平分线所在的直线2.两个底角相等(等边对等角)3.三线合一 顶角平分线,底边中线,底边的高判定:1.如果一个三角形两角相等那么两角所对的边也相等2.两边相等的三角形是等腰三角形2.等边三角形性质和判定:性质:1.等边三角形是轴对称图形,有三条对称轴2.三个边相等3.每个角都是60度判定:1.三个边相等的三角形是等边三角形2.三个角都相等的三角形3.有一个角等于60度的等腰三角形1.6等腰梯形的轴对称 等腰梯形的定义:1.梯
4、形的定义:一组对边平行,另一组对边不平行的四边形为梯形。梯形中,平行的一组对边称为底,不平行的一组对边称为腰。ADCB2.等腰梯形的定义:两腰相等的梯形叫做等腰梯形。等腰梯形的性质:1.等腰梯形是轴对称图形,对称轴是两底中点的连线所在的直线。2.等腰梯形同一底上两底角相等。3.等腰梯形的对角线相等。等腰梯形的判定:1.在同一底上的2个底角相等的梯形是等腰梯形。补充:对角线相等的梯形是等腰梯形。第二章 勾股定理与平方根2.1勾股定理1.勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即2勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。2.2神秘的数组勾股
5、数:满足的三个正整数,称为勾股数。2.3平方根1.平方根 1.平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。表示方法:正数a的平方根记做“”,读作“正、负根号a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。 注意的双重非负性: 02.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。表示方法:记作“”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2.4平方根立方根:
6、一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。表示方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:,这说明三次根号内的负号可以移到根号外面。2.5实数1.实数的概念及分类 正有理数 有理数 零 有限小数和无限循环小数1)实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2) 3)每一个实数都可以用数轴上的一个点来表示;反之,数轴上的每一个点都表示一个实数,实数与数轴上的点一一对应。2.无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,
7、如等;(2)有特定意义的数,如圆周率,或化简后含有的数,如+8等;(3)有特定结构的数,如0.1010010001等; 3.实数的倒数、相反数和绝对值 1、相反数实数与它的相反数是一对数(零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|=-a,则a0。3、倒数如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、
8、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。5、估算4.实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,(3)求商比较法:设a、b是两正实数,(4)绝对值比较法:设a、b是两负实数,则。(5)平方法:设a、b是两负实数,则。5.实数的运算 (1)六种运算:加、减、
9、乘、除、乘方 、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的分配律 2.6近似数与有效数字近似数:(测量结果都是包含误差的近似数)有效数字:对一个近似数,从左边第一个不是0的数字起,到末尾数字止,所有数字称为这个近似数的有效数字。注:当保留n位有效数字,若第n+1位数字4就舍掉,若第n+1位数字5时,则第n位数字进1。科学记数法一般地,一个大于10的数可以表示成的形式,其中,n是正整数,这种记数方法叫做科学记数法。第三章 中心对称图形(一)3.1图形的旋转1.旋转定义在平面内
10、,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。3.2.中心对称与中心对称图形 1.中心对称 : 定义:在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。性质:(1)关于中心对称的两个图形是全等形。(2)关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。(3)关于中心对称的两个图形,对应线段平行(或在同一直线上)且相等。判定:如果
11、两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称。2.中心对称图形:把一个平面图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形互相重合,那么这个图形叫做中心对称图形。这个点叫做它的对称中心。3.3平行四边形1.四边形的相关概念 1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。四边形的外角和定理:四边形的外角和等于360°。推论:多边形的内角和定理:n边形的内角和等于180°
12、;; 多边形的外角和定理:任意多边形的外角和等于360°。2.平行四边形 定义:两组对边分别平行的四边形性质:1. 两组对边分别相等 2.两组对角分别相等 3.对角线互相平分判定 1.两组对边分别平行的四边形是平行四边形 2.两组对边分别相等的四边形是平行四边形 3.对角线互相平分的四边形是平行四边形4.一组对边平行且相等的四边形是平行四边形3.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。平行线间的距离处处相等。4.平行四边形的面积S平行四边形=底边长×高=ah3.4矩形 、菱形、正方形1.矩形 定义:有一个角是直角的平行四
13、边形性质:1.对角线相等(对角线把矩形分为四个等腰三角形) 2.四个角都是直角 判定:1.有一个角是直角的平行四边形是矩形 2.三个角都是直角的四边形是矩形 3.对角线相等的平行四边形是矩形形矩形的面积S矩形=长×宽=ab2. 菱形:定义:有一组邻边相等的平行四边形性质:1.四条边都相等 2.对角线互相垂直平分且每一条对角线平分一组对角(对角线把菱形分为四个全等的直角三角形)面积公式S=1/2ab判定:1.有一组邻边相等的平行四边形是菱形 2.对角线互相垂直的平行四边形是菱形3.四条边都相等的四边形是菱形面积:S菱形=底边长×高=两条对角线乘积的一半3.正方形:定义:有一组邻边相等且有一个角是直角的平行四边形性质:1.四边相等,邻边垂直,对边平行 2.四个角都是直角 3.两对角线相等,互相垂直平分, 每条对角线平分一组对角判定:1.一组邻边相等的矩形是正方形 2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年人工智能:《杠杆》课件
- 2024季节更替之春夏秋冬
- 2024年视角:《蜜蜂》课件的视觉艺术
- 2024年传染病数据分析与管理
- 2023年度淄博市职业技能大赛竞赛方案(水处理技术)
- 《创意美术字》课件:2024年网页设计新风尚
- 2024年版传染病护理学教案设计实践分享
- 2023年辽宁省抚顺市中考英语真题(解析版)
- 2024年剪纸艺术课件:传统与现代应用的交融与发展
- 2024年教育信息化:《认识百分数》课件的数字化探索
- GB/T 44536-2024CVD陶瓷涂层热膨胀系数和残余应力试验方法
- 2024-2025学年七年级英语上学期期中试卷(沪教五四制2024)(含答案)
- 纸夹子市场分析及投资价值研究报告
- 神州十三号飞船知识科普宣传主题
- 《大学生创新创业基础教程》第六章创业资源与融资
- 专职会计劳务合同模板
- 2024年秋新沪教牛津版英语三年级上册课件 Unit 5 第2课时
- 中图版七年级下册信息技术 2.1规划影片任务 教学设计
- 《短视频拍摄与制作》课件-3短视频中期拍摄
- 电气化区段的轨道电路
- 热继电器结构与原理教学资料ppt课件
评论
0/150
提交评论