版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 中 国 教 育 培 训 领 军 品 牌环球雅思学科教师辅导讲义 组长签字: 学员编号: 年 级:八年级 课时数:3学员姓名: 辅导科目: 数学 学科教师: 赵文娜授课日期及时段教学目标重点难点教学内容平行四边形动点及存在性问题【例1】正方形ABCD的边长为8,M在DC上,且DM2,N是AC上的一动点,DNMN的最小值为 。 【练习1】如图,在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,OA=3,OB=4,D为边OB的中点. (1)若E为边OA上的一个动点,当CDE的周长最小时,求点E的坐标; (2)若E、F为边OA上的两个动点,
2、且EF=2,当四边形CDEF的周长最小时,求点E、F的坐标. 【例3】 如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为(10,0),(0,4),点D是OA的中点,点P在BC上运动,当三角形ODP是腰长为5的等腰三角形时,P的坐标为 ; 【练习2】如图,在平面直角坐标系中,ABOC,A(0,12),B(a,c),C(b,0),并且a,b满足一动点P从点A出发,在线段AB上以每秒2个单位长度的速度向点B运动;动点Q从点O出发在线段OC上以每秒1个单位长度的速度向点C运动,点P、Q分别从点A、O同时出发,当点P运动到点B时,点Q随之停止运动设运动时间为t(秒)(1)求B、C
3、两点的坐标;(2)当t为何值时,四边形PQCB是平行四边形?并求出此时P、Q两点的坐标;(3)当t为何值时,PQC是以PQ为腰的等腰三角形?并求出P、Q两点的坐标 【例4】(1)如图,矩形ONEF的对角线相交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为 ;(2)在直角坐标系中,有A(-1,2),B(3,1),C(1,4)三点,另有一点D与点A、B、C构成平行四边形的顶点,求点D的坐标 【练习3】如图,四边形ABCD为矩形,C点在x轴上,A点在y轴上,D点坐标是(0,0),B点坐标是(3,4),矩形ABCD沿直线EF折叠,点A落在BC边上的G处,E、
4、F分别在AD、AB上,且F点的坐标是(2,4)(1)求G点坐标;(2)求直线EF解析式;(3)点N在x轴上,直线EF上是否存在点M,使以M、N、F、G为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由【例5】在RtABC中,B=90°,AC=60cm,A=60°,点D从点C出发沿CA方向以4cm/s的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/s的速度运动,当其中一个点到达终点时,另一个点也随之停止运动设点D,E运动的时间是ts(0<t15)过点D作DFBC于点F,连接DE,EF(1)求证:AE=DF;(2)四边形AEFD能够
5、成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(3)当t为何值时,DEF为直角三角形?请说明理由【练习4】如图,等腰三角形OAB的一边OB在x轴的正半轴上,点A的坐标为(6,8),OA=OB,动点P从原点O出发,在线段OB上以每秒2个单位的速度向点B匀速运动,动点Q从原点O出发,沿y轴的正半轴以每秒1个单位的速度向上匀速运动,过点Q作x轴的平行线分别交OA,AB于E,F,设动点P,Q同时出发,当点P到达点B时,点Q也停止运动,他们运动时间为t秒()(1)点E的坐标为 ,F的坐标为 ;(2)当t为何值时,四边形POFE是平行四边形;(3)是否存在某一时刻,使PEF为直角三角形?若存在
6、,请求出此时t的值;若不存在,请说明理由【巩固练习】1、菱形ABCD中,AB=2, BAD=60°,点E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为 。 第1题图 第2题图 第3题图 第4题图 2、如图,在RtABC中,ACB=90°,A=30°,AC=,BC的中点为D,将ABC绕点C顺时针旋转任意一个角度得到FEC,EF的中点为G,连接DG,在旋转过程中,DG的最大值是_;最小值是_ 3、已知ABC是等腰直角三角形,BAC=90°,点D是BC的中点作正方形DEFG,连接AE,BG,若BC=DE=4,将正方形DEFG绕点D旋转,当AE
7、取最小值时,AF= 4、在三角形纸片ABC中,已知ABC=90°,AB=6,BC=8。过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线上的T处,折痕为MN当点T在直线上移动时,折痕的端点M、N也随之移动若限定端点M、N分别在AB、BC边上移动,则线段AT长度的最大值与最小值之和为_.5、如图,在梯形ABCD中,ADBC,B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动到C点返回,动点Q从点A出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,
8、点P随之停止运动,设运动的时间为t(秒)(1)当t为何值时,四边形PQDC是平行四边形;(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm²?(3)是否存在点P,使PQD是等腰三角形?若存在,请求出所有满足要求的t的值;若不存在,请说明理由6、如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程组的解,点C是直线与直线AB的交点,点D在线段OC上,OD=。(1)求直线AB的解析式及点C的坐标;(2)求直线AD的解析式;(3)P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点
9、Q的坐标;若不存在,请说明理由动点问题题型 图D-01如图D-01,四边形ABCD中,ADCB,且AD>BD,BC=6cm,动点P、Q分别从A、C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C向B运动,几秒后四边形ABQP是平行四边形? 如图D-02,在ABC中,点O是AC边上一动点,过O作直线MNBC,设MN交ACB的平分线于E,交ACB的外角平分线于F, 求证:OE=OF 当点O运动到何处时,四边形AECF是矩形?证明你的结论提示 易证1=2=3,得OE=OC 同理OF=OC,得证OE=OF如图D-03,矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边
10、从点A向B以2cm/s的速度移动;点Q沿DA边从点D向A以1cm/s的速度移动;如果P、Q同时出发,t(s)表示移动时间(0<t<6),那么: 当t为何值时,QAP为等腰直角三角形? 求四边形QAPC的面积,并提出一个与计算结果有关的结论 图D-03 4.如图,在菱形ABCD中,AB=2,DAB=60°,点E是AD边的中点点M是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD、AN(1)求证:四边形AMDN是平行四边形;(2)填空: 当AM的值为_时,四边形AMDN是矩形; 当AM的值为_时,四边形AMDN是菱形 5.如图,ABC中,点O是边AC上一个动
11、点,过O作直线MNBC,设MN交BCA的平分线于点E,交BCA的外角平分线于点F(1)探究:线段OE与OF的数量关系并加以证明;(2)当点O运动到何处,且ABC满足什么条件时,四边形AECF是正方形?(3)当点O在边AC上运动时,四边形BCFE会是菱形吗?若是,请证明,若不是,则说明理由6. 如图,已知菱形ABCD中,ABC=60°,AB=8,过线段BD上的一个动点P(不与B、D重合)分别向直线AB、AD作垂线,垂足分别为E、F(1)BD的长是_;(2)连接PC,当PE+PF+PC取得最小值时,此时PB的长是_7.如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延
12、长线交BC于Q。(1)求证:OP=OQ; (2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合)。设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形。 8.如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由 9. 已知:如图,在ABCD 中,E、F分别为边AB、CD的中点,BD是对角线,AGDB交C
13、B的延长线于G。(1)求证:ADECBF;(2)若四边形BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论。10.如图,在平行四边形ABCD中,对角线BD=12cm,AC=16cm,AC,BD相交于点O,若E,F是AC上两动点,分别从A,C两点以相同的速度向C、A运动,其速度为0.5cms。(1) 当E与F不重合时,四边形DEBF是平行四边形吗?说明理由;(2)点 E,F在AC上运动过程中,以D、E、B、F为顶点的四边形是否可能为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由。11. 如图,平行四边形ABCD中,ABAC,AB=1,BC=,对角线AC,BD相交于点O,将
14、直线AC绕点O顺时针旋转,分别交BC,AD于点E,F (1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC绕点O顺时针旋转的度数12.如图,在ABC中,ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE (1)说明四边形ACEF是平行四边形;(2)当B满足什么条件时,四边形ACEF是菱形,并说明理由。 13.如图,在菱形ABCD中,P是AB上的一个动点(不与A、B重合),连接DP交对角线AC于E连接BE(1)证明:APD=CBE;(2)若DAB=60
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 网络 外包合同范例
- 个人欠款抵押合同范例
- 路由器项目合同模板
- 钢材房屋租赁合同模板
- 全庆典演义合同范例
- 终止生产合作合同模板
- 工商变更服务合同范例
- 苏州整栋厂房出租合同范例
- 长期股权协议合同范例
- 解除房屋定金合同范例
- 2024年戏曲剧本创作协议
- GB/T 18724-2024印刷技术印刷品与印刷油墨耐各种试剂性的测定
- 第四章 牛顿运动定律 章末检测题(基础卷)(含答案)2024-2025学年高一上学期物理人教版(2019)必修第一册
- 2025全国注册监理工程师继续教育题库附答案
- 《实数(1)》参考课件2
- QC课题提高金刚砂地面施工一次合格率
- 2024年全国甲卷《霜降夜》解读
- 中建基础设施类物资验收作业指导手册
- 2024版2024年《美丽的线描画》中班美术教案
- 期末复习(试题)-2024-2025学年人教PEP版英语六年级上册
- 人教版小学二年级数学上册《第五单元 观察物体(一)》大单元整体教学设计2022课标
评论
0/150
提交评论