版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、新人教版八年级上册数学教学设计2018-12-21八年级上册数学目录第十一章三角形11.1与三角形有关的线段 11.2 与三角形有关的角11.3 多边形及其内角和数学活动小结复习题11第十二章全等三角形12.1 全等三角形12.2 三角形全等的判定12.3 角的平分线的性质数学活动小结复习题12第十三章轴对称13.1 轴对称13.2 画轴对称图形13.3 等腰三角形13.4 课题学习最短路径问题数学活动小结复习题13第十四章整式的乘法与因式分解14.1 整式的乘法14.2 乘法公式14.3 因式分解数学活动小结复习题14第十五章分式15.1 分式15.2 分式的运算15.3 分式方程数学活动小
2、结复习题15第十一章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和。三角形的高、中线和角平分线是三角形中的主要线段,与三角形有关的角有内角、外角。教材通过实验让学生了解三角形的稳定性,在知道三角形的内角和等于1800的基础上,进行推理论证,从而得出三角形外角的性质。接着由推广三角形的有关概念,介绍了多边形的有关概念,利用三角形的有关性质研究了多边形的内角和、外角和公式。这些知识加深了学生对三角形的认识,既是学习特殊三角形的基础,也是研究其它图形的基础。最后结合实例研究了镶嵌的有关问题,体现了多边形内角和公式在实际生活中的应用.教学目标知识与技能 1、理解三角形及有关概念,会画
3、任意三角形的高、中线、角平分线;2、了解三角形的稳定性,理解三角形两边的和大于第三边,会根据三条线段的长度判断它们能否构成三角形;3、会证明三角形内角和等于1800,了解三角形外角的性质。4、了解多边形的有关概念,会运用多边形的内角和与外角和公式解决问题。过程与方法1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。情感、态度与价值观1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;
4、3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平页镶嵌设计是难点。11.1.1三角形的边教学目标1、了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2、理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.重点难点三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。教学过程一、情景导入三角形是一种最常见的
5、几何图形, 投影1-6如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。abc那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。注意:三条线段必须不在一条直线上,首尾顺次相接。组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。三角形ABC用符号表示为ABC。三角形ABC的顶点C所对的边AB可用c 表示,顶点B所对的边AC可用b表示,顶点A所对的边BC可用a表示.三、三角形三边的不等关系探究:投影7任意画一个ABC,假设有一只小虫要从B点出发,沿三角形的边爬到C,它有几
6、种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从BC,(2)从BAC;不一样, AB+ACBC ;因为两点之间线段最短。同样地有 AC+BCAB AB+BCAC 由式子我们可以知道什么?三角形的任意两边之和大于第三边.四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。按角分类:三角形直角三角形斜三角形锐角三角形钝角三角形那么三角形按边如何进行分类呢?请你按“有几条边相等”将三角形分类。三边都相等的三角形叫做等边三角形;有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。腰腰底边顶角底角
7、底角显然,等边三角形是特殊的等腰三角形。按边分类:三角形不等边三角形等腰三角形底和腰不等的等腰三角形等边三角形五、例题例用一条长为18的细绳围成一个等腰三角形。(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边长为4的等腰三角形吗?为什么?分析:(1)等腰三角形三边的长是多少?若设底边长为x,则腰长是多少?(2)“边长为4”是什么意思?解:(1)设底边长为x,则腰长2 x。x+2x+2x=18解得x=3.6所以,三边长分别为3.6,7.2,7.2.(2)如果长为4的边为底边,设腰长为x,则4+2x=18解得x=7如果长为4的边为腰,设底边长为x,则2×4+x=18解得
8、x=10因为4+410,出现两边的和小于第三边的情况,所以不能围成腰长是4的等腰三角形。由以上讨论可知,可以围成底边长是4的等腰三角形。五、课堂练习课本第4页练习1、2题。课本第8页1、2、6题六、课堂小结1、三角形及有关概念;2、三角形的分类;3、三角形三边的不等关系及应用。作业:课本第8页习题11.1第7题。11.1.2 三角形的高、中线与角平分线教学目标1、经历画图的过程,认识三角形的高、中线与角平分线;毛2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点.重点难点三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,
9、画钝角三角形的高是难点.教学过程一、导入新课我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。二、三角形的高请你在图中画出ABC的一条高并说说你画法。从ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做ABC的边BC上的高,表示为ADBC于点D。注意:高与垂线不同,高是线段,垂线是直线。请你再画出这个三角形AB 、AC边上的高,看看有什么发现?三角形的三条高相交于一点。如果ABC是直角三角形、钝角三角形,上页的结论还成立吗?现在我们来画钝角三角形三边上的高,如图。ABCODEF显然,上页的结论成立。请你画一个直角三角形,
10、再画出它三边上的高。上页的结论还成立。三、三角形的中线如图,我们把连结ABC的顶点A和它的对边BC的中点D,所得线段AD叫做ABC的边BC上的中线,表示为BD=DC或BD=DC1/2BC或2BD=2DC=BC.请你在图中画出ABC的另两条边上的中线,看看有什么发现?三角的三条中线相交于一点。如果三角形是直角三角形、钝角三角形,上页的结论还成立吗?请画图回答。上页的结论还成立。四、三角形的角平分线如图,画A的平分线AD,交A所对的边BC于点D,所得线段AD叫做ABC的角平分线,表示为BAD=CAD或BAD=CAD1/2BAC或2BAD=2CADBAC。 思考:三角形的角平分线与角的平分线是一样的
11、吗?三角形的角平分线是线段,而角的平分线是射线,是不一样的。请你在图中再画出另两个角的平分线,看看有什么发现?三角形三个角的平分线相交于一点。如果三角形是直角三角形、钝角三角形,上页的结论还成立吗?请画图回答。上页的结论还成立。想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。五、课堂练习课本第5页练习1、2题。六、课堂小结1、三角形的高、中线、角平分线的概念和画法。2、三角形的三条高、三条中线、三条角平分线
12、及交点的位置规律。作业:课本第8页习题11.1第4题,第9页第9题。11.1.3三角形的稳定性教学目标 1、知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。重点难点三角形稳定性及应用。教学过程一、情景导入盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?二、三角形的稳定性实验1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?(2)不会改变。2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?会改变。3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?不会
13、改变。从上页的实验中,你能得出什么结论?三角形具有稳定性,而四边形不具有稳定性。三、三角形稳定性和四边形不稳定的应用三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如:钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。你还能举出一些例子吗?四、课堂练习1、下列图形中具有稳定性的是()A正方形 B长方形 C直角三角形 D平行四边形2、要使下列木架稳定各至少需要多少根木棍?3、课本第7页练习。作业:课本第8页习题11.1第5题。11.2.1三角形的内角教学目标掌握三角形内角和定理。重点难点三角形内角和定理是重点;三角形内角和定
14、理的证明是难点。教学过程一、导入新课我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?二、三角形内角和的证明回顾我们小学做过的实验,你是怎样操作的?把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出BCD的度数,可得到A+B+ACB=1800。投影1图1想一想,还可以怎样拼?剪下A,按图(2)拼在一起,可得到A+B+ACB=1800。图2把和剪下按图(3)拼在一起,可得到A+B+ACB=1800。如果把上页移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?已知ABC,求证:A+B+C=1800。证明
15、一过点C作CMAB,则A=ACM,B=DCM,又ACB+ACM+DCM=1800A+B+ACB=1800。即:三角形的内角和等于1800。三角形内角和定理 三角形三个内角的和等于由图2、图3你又能想到什么证明方法?请说说证明过程。三、例题例如图,C岛在A岛的北偏东500方向,B岛在A岛的北偏东800方向,C岛在B岛的北偏西400方向,从C岛看A、B两岛的视角ACB是多少度?分析:怎样能求出ACB的度数?根据三角形内角和定理,只需求出AB和CBA的度数即可。CAB等于多少度?怎样求CBA的度数?解:CBA=BAD-CAD=800-500=300ADBE BAD+ABE=1800ABE=1800-
16、BAD=1800-800=1000ABC=ABE-EBC=1000-400=600ACB=1800-ABC-CAB=1800-600-300=900答:从C岛看AB两岛的视角ACB=1800是。在直角三角形ABC中,C900由三角形内角和定理,得A+B+C=1800,所以A+B900三角形内角和定理的推论:直角三角形的两个锐角互余。四、课堂练习课本13页1、2题。作业:课本16页习题11.2 第3、4。第十一章复习一(11.1-11.2.1)一、双基回顾1、三角形:由的三条直线所组成的图形,叫做三角形。1图中有个三角形,用符号表示为。ADCBE2、三角形的分类:(1)按角分类:三角形(2)按边
17、分类:三角形2三角形中最大的角是700,那么这个三角形是三角形。3、三角形三角的关系:三角形三个内角的和是。4、三角形的三边关系:三角形的两边之和第三边,两边之差第三边。3一个三角形的两边长分别是3和8,则第三边的范围是.5、三角形的高、中线、角平分线从三角形的向它的作垂线,顶点和垂足之间的线段叫做三角形的高注意:三角形的高与垂线不同;三角形的高可能在三角形内部,可能在三角形的边上,可能在三角形的外部。在三角形中,连接与它的线段,叫做三角形的中线.在三角形中,一个内角的角平分线与它的对边相交,与之间的线段,叫做三角形的角平分线。ABCDE注意:三角形的角平分线与角的平分线不同.4如图,以AE为
18、高的三角形是. 6、三角形的三条高所在的直线相交于一点。这点可能在三角形的,可能在三角形的,可能在三角形的。三角形的三条中线相交于一点。这点在三角形的.三角形的三条角平分线相交于一点。这点在三角形的。5如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是 A.锐角三角形B.直角三角形C.钝角三角形D.锐角三角形7、三角形的稳定性:具有稳定性,具有不稳定性.6有些窗户是可以向外推开的,当我们把窗户推开后,就顺手把风钩勾上,为什么这样做呢?我们的校门是铁栅栏,为什么既能拉开,又能推拢去呢?二、例题导引例1 两根木棒长分别为3厘米和6厘米,要截取其中一根木棒将它钉成一个三角形,如果要求
19、三边长为整数,那么截取的情况有几种?例2 如图,已知AD、AE分别是ABC的高和中线,AB=6厘米,AC=8厘米,BCABCDE10厘米,CAB=900,试求(1)AD的长;(2)ABE的页积;(3)ACE与ABE的周长的差。例3 如图,BE平分ABC,CD平分ACB,A500,求BOC的度数。OABCDE12三、练习升华夯实基础1、有下列长度的三条线段,能组成三角形的是( ) A.1、2、3 B.1、2、4 C.2、3、4 D.2、3、62、如图,工人师傅把新做好的门框上方钉两根木条后存放起来,这是防止,根据是.EABCDEABCD2题 3题 4题3、图中共有个三角形。4、如图,ABBD于B
20、, DCAC于C,AC与BD交于点E,那么ADE的边DE上的高为,AE上的高为.5、下列说法正确的是A、直角三角形只有一条高 B、三角形的三条中线相交于一点C、三角形的三条高相交于一点 D、三角形的角平分线是射线6、如果三角形的三个内角的度数比是2:3:4,则它是( )毛 A.锐角三角形 B.钝角三角形 C.直角三角形 D.钝角或直角三角形7、现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度, 要钉成一个三角形木架,应在下列四根木棒中选取的木棒 A.10cm B.20cm C.50cm D.60cm8、在ABC中,AB=AC,AD是中线,ABC的周长为34cm,ABD的周长
21、为30cm, 求AD的长.9、在ABC中,高CE,角平分线BD交于点O, ECB=50°,求BOC的度数.能力提高10、在ABC中,若A+B=C,则此三角形为_三角形.11、任何一个三角形的三个角中至少有A、一个锐角 B、两个锐角 C、一个直角 D、一个钝角12、已知等腰三角形的两边长分别为3和6,则它的周长为 A.13 B.15 C. 14 D. 13或15 13、若等腰三角形的腰长为6,则它的底边长a的取值范围是_;若等腰三角形的底边长为4,则它的腰长b的取值范围是_.14、在ABC中,AD是BC上的中线,且SACD=12,SABC.15、在ABC中,AB=AC, AC边上的中线
22、BD把ABC的周长分成15和6两部分,求这个三角形的腰长及底边长。ABCDE16、如图,ABC中,AD、AE分别是ABC的高和角平分线,C600,B280,求DAE的度数。探究创新17、如图,线段、相交于点,能否确定与的大小,并加以说明毛11.2.2三角形的外角教学目标 1、理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。重点难点三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。教学过程一、导入新课投影1如图,ABC的三个内角是什么?它们有什么关系?是A、B、C,它们的和是1800。若延长BC至D,则ACD是什么角?这个角与ABC的三个内角有什么关系?二
23、、三角形外角的概念ACD叫做ABC的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。想一想,三角形的外角共有几个?共有六个。注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角.三、三角形外角的性质容易知道,三角形的外角ACD与相邻的内角ACB是邻补角,那与另外两个角有怎样的数量关系呢?投影2如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明ACD与A、B的关系吗?CEAB,A=1,B=2又ACD=1+2ACD=A+B你能用文字语言叙述这个结论吗?三角形的一个外角等于与它不相邻的两个内角之和。四、例题投影3例如图,1、
24、2、3是三角形ABC的三个外角,它们的和是多少? 分析:1与BAC、2与ABC、3与ACB有什么关系?BAC、ABC、ACB有什么关系?解:1+BAC=1800,2+ABC=1800,3+ACB=1800,1+BAC+2+ABC+3+ACB=5400又BAC+ABC+ACB=18001+2+3=3600。你能用语言叙述本例的结论吗?三角形外角的和等于3600。五、课堂练习课本15页练习;六、课堂小结1、什么是三角形外角?2、三角形的外角有哪些性质?作业:课本17页习题11.2第8、9题。11.31 多边形教学目标1、了解多边形及有关概念,理解正多边形的概念2、区别凸多边形与凹多边形重点难点多边
25、形及有关概念、正多边形的概念是重点;区别凸多边形与凹多边形是难点。教学过程一、情景导入投影1看下页的图片,你能从中找出由一些线段围成的图形吗?二、多边形及有关概念这些图形有什么特点?由几条线段组成;它们不在同一条直线上;首尾顺次相接这种在平页内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。多边形按组成它的线段的条数分成三角形、四边形、五边形、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的A、B、C、D、E。多边形的边与它的邻边的延长线组成的角叫做多边形的外角如图中的1是五边形A
26、BCDE的一个外角。投影2连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线四边形有几条对角线?五边形有几条对角线?画图看看。你能猜想n边形有多少条对角线吗?说说你的想法。n边形有1/2n(n3)条对角线。因为从n边形的一个顶点可以引n3条对角线,n个顶点共引n(n3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有1/2n(n3)条对角线。三、凸多边形和凹多边形投影3如图,下页的两个多边形有什么不同?在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的
27、特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。注意:今后我们讨论的多边形指的都是凸多边形四、正多边形的概念我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形。投影4下页是正多边形的一些例子。五、课堂练习课本81页练习1。2、有五个人在告别的时候相互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗?六、课堂小结 1、多边形及有关概念。2、区别凸多边形和凹多边形。3、正多边形的概念。4、n边形对角线有条。作业:课本21页练习1,2。11.32 多边形的内角和教学目标1、了解多边形的内角、
28、外角等概念;2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算重点难点多边形的内角和与多边形的外角和公式是重点;多边形的内角和定理的推导是难点。教学过程一、复习导入我们已经证明了三角形的内角和为180°,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360°,现在你能利用三角形的内角和定理证明吗?二、多边形的内角和投影1如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?ABCD可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=ABD的内角和+BDC的内角和=2
29、15;180°=360°。类似地,你能知道五边形、六边形 n边形的内角和是多少度吗?投影2观察下页的图形,填空:五边形六边形从五边形一个顶点出发可以引对角线,它们将五边形分成三角形,五边形的内角和等于;从六边形一个顶点出发可以引对角线,它们将六边形分成三角形,六边形的内角和等于;投影3从n边形一个顶点出发,可以引对角线,它们将n边形分成三角形,n边形的内角和等于。n边形的内角和等于(n一2)·180°从上页的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?分法一投影3如图1,在五边形ABCDE内任取一
30、点O,连结OA、OB、OC、OD、OE,则得五个三角形。五边形的内角和为5×180°一2×180°(52)×180°=540°。图1 图2分法二投影4如图2,在边AB上取一点O,连OE、OD、OC,则可以(51)个三角形。五边形的内角和为(51)×180°一180°(52)×180°如果把五边形换成n边形,用同样的方法可以得到n边形内角和(n一2)×180°三、例题投影6例1 如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形ABCD
31、中,AC180°,求B与D的关系分析:A、B、C、D有什么关系?解:A+B+C+D=(42)×180°=360°又AC180°BD= 360°(AC)=180°这就是说,如果四边形一组对角互补,那么另一组对角也互补投影7例2 如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少?如图,已知1,2,3,4,5,6分别为六边形ABCDEF的外角,求1+2+3+4+5+6的值分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?解:1+BAF=180°2+ABC
32、=180°3+BAD=180°4+CDE=180°5+DEF=180°6+EFA=180°1+BAF+2+ABC+3+BAD+4+CDE+5+DEF+6+EFA=6×180°又1+2+3+4+5+6=4×180°BAF+ABC+BAD+CDE+DEF+EFA=6×180°-4×180°=360°这就是说,六边形形的外角和为360°。如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360°。对此,我们也可以这样来理解。投影8如
33、图,从多边形的一个顶点A出发,沿多边形各边走过各顶点,再回到A点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360°四、课堂练习课本24页练习1、2、3题。五、课堂小结n边形的内角和是多少度?n边形的外角和是多少度?作业:25页习题11.3 第4、5、6、题。第十一章复习二(11.2.211.3)一、双基回顾1、三角形的外角:三角形与另组成的角叫做三角形的外角.如图1,是ABC的一个外角.x1450图1 图22、三角形外角的性质(1)三角形的一个外角等于两个内角和.注意:三角形的外角和等于360
34、0.1如图2,450,则x=.(2)三角形的一个外角与它不相邻的任何一个内角.2如图,ABC中,1与A有什么关系?为什么?ABC123、多边形和正多边形在平页内,由相接组成的图形叫做多边形。注意:多边形分为凸多边形和凹多边形,我们现在只研究凸多边形.各相等,各相等的多边形叫做正多边形。4、对角线连接多边形线段叫做对角线。3从九边形的一个顶点作对角线,能作条,可把九边形分成个三角形。5、多边形的内角和、外角和n边形的内角和是;n边形的外角和是.4一个多边形的内角和等于它的外角和,这个多边形是边形。6、平页镶嵌能单独镶嵌的图形有。5正五边形不能单独镶嵌的原因是什么?用多种正多边形镶嵌必须满足条件:
35、几种多边形在的内角的和为.6某公园便道用三种不同的正多边形地砖镶嵌,已选好了正十二边形和正方形两种,还需选用.二、例题导引例1(1)已知正多边形的一个内角是 150°,求这个多边形对角线的条数?(2)n边形的边数每增加1条,其内角和增加多少度?例2 如图,一个任意五角星的五个角的和是多少?例 3 一个零件形状如图所示,按规定BAC=900, B=210, C=200,检验工人量得BDC=1300,就断定此零件不合格,请运用所学知识说明理由。(运用三种方法)ABCD三、练习提高夯实基础1、若三角形的一个外角小于与它相邻的内角,则这个三角形是( )毛A.直角三角形 B.锐角三角形 C.钝
36、角三角形 D.无法确定2、如图,CAB的外角为120°,B为40°,则C 的度数是_ .3、如图1,ABCD,A= 38°C= 80°,则M为() A、52° B、42° C、10° D、40° 2题 3题4、如图,在ABC中,E是AC延长线上的一点,D是BC上的一点,1 与A的大小关系是.5、若从一个多边形的一个顶点最多可以引10条对角线,则它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形6、下列可能是n边形内角和的是() A、300° B、550° C、720° D
37、、960°7、一个多边形的每一个外角都等于24°,则这个多边形是边形.8、一个多边形的内角和与外角和的比是72,则这个多边形是边形.9、某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是( )A、三角形 B、矩形 C、正八边形 D、正六边形10、如图,在ABC中,AD是BAC的平分线,2=350,4=65°, 求ADB的度数.能力提高11、用边长相等的正多边形进行密铺,下列正多边形能和正八边形密铺的是A、正三角形 B、正六边形 C、正五边形 D、正四边形12、如果一个三角形的各内角与一个外角的和是225°,则与这个外角相
38、邻的内角是_度.13、如图,若A=32°,B=45°,C=38°,则DFE等于( )A.120° B.115° C.110° D.105° 13题 15题14、一个多边形的内角中,锐角的个数最多有( ) A.3个 B.4个 C.5个 D.6个15、.如图所示,A=50°,B=40°,C=30°,则BDC=_.16、一个多边形的每一个内角都比相邻的外角的3倍还多20°,求这个多边形对角线的条数。17、如图所示,ABC两外角的平分线BP、CP交于点P,已知A=500,求P的度数.探究创新1
39、8、如图,求1+2+3 +4+5+6+7的度数。本章小结一、知识结构三角形与三角形有关的线段三角形的内角和三角形的外角和高中线角平分线多边形的内角和多边形的外角和二、回顾与思考1、什么是三角形?什么是多边形?什么是正多边形?三角形是不是多边形?2、什么是三角形的高、中线、角平分线?什么是对角线?三角形有对角线吗?n边形的的对角线有多少条?3、三角形的三条高,三条中线,三条角平分线各有什么特点?4、三角形的内角和是多少?n边形的内角和是多少?你能用三角形的内角和说明n边形的内角和吗?5、三角形的外角和是多少?n边形的外角和是多少?你能说明为什么多边形的外角和与边数无关吗?三、例题导引例1 如图,
40、在ABC中,ABC=345,BD、CE分别是边AC、AB上的高,BD、CE相交于点H,求BHC的度数。ABCDEH例2 如图,把ABC沿DE折叠,当点A落在四边形BCDE内部时,探索A与12有什么数量关系?并说明理由。12例3 如图所示,在ABC中,ABC的内角平分线与外角平分线交于点P,试说明P1/2A.四、巩固练习课本29页复习题11(第3题可不做).11.2 与三角形有关的角(2)教学目标知识与技能1.了解三角形的外角;毛2、探索并了解三角形的一个外角等于与它不相邻的两个内角的和过程与方法通过小组学习等活动经历得出三角形的外角概念和三角形的外角性质。学会运用简单的说理来计算三角形相关的角
41、情感态度价值观通过猜想、推理等数学活动,感受数学活动充满探索以及数学结论的确定性,提高学生的推理能力及学习热情教学重点三角形的外角性质知识难点能准确地表达推理的过程和方法教学准备三角尺、铅画纸、小剪刀。教学过程(师生活动)设计理念设置情境1.三角形的内角和定理是什么?2.把的一边AB延长到D,得,它不是三角形的内角,那它是三角形的什么角?它是三角形的外角。通过对旧知识的复习回忆唤醒学生已有知识,有助于后继问题的解决探索新知1.定义:三角形一边与另一边的延长线组成的角,叫做三角形的外角三角形外角的特点:顶点在三角形的一个顶点上。一条边是三角形的一条边。另一条边是三角形的某条边的延长线。想一想:三
42、角形的外角有几个?每个顶点处有两个外角,但这两个是对顶角2.如图所示,一个三角形的每一个外角对应一个相邻的内角和两个不相邻的内角,不相邻的两个内角是与这个外角不同顶点的两个内角。3.小组讨论:问:三角形的外角与和它不相邻内角有什么关系?(互补)探索三角形的一个外角与它不相邻的两个内角之间的关系。请同学们拿出一张白纸,在白纸上画出如教科书图11.2-8所示的图形,然后把ACB、BAC剪下拼在一起放到CBD上,使点A、C、B重合,看看会出现什么结果,与同伴交流一下,结果是否一样。请你用文字语言叙述三角形的一个外角与它不相邻的两个内角间的关系。4.结论:三角形的一个外等于与它不相邻的两个内角的和。进
43、一步锻炼学生操作能力和语言表达能力。应用新知1、 完成教科书15页练习。2、 如图1,在ABC中,ADBC,AE平分BAC,B=80度,C=46度,。(1) 你会求DAE的度数吗?(2) 你能发现DAE与B、C的度数吗?(3) 若只知道B-C=20度,你能求出DAE的度数吗?分析:(1)DAE是哪个三角形的内角或外角?(2) ADE中,已知什么?要求出DAE,只需求什么?(3) AED是哪个三角形的外角?(4) 在AEC中已知什么?要求AEB,只需求什么?(5) 怎么样求EAC的度数?引申:(1)还有其他方法求DAE的度数吗?(2)你能说明为什么DAE=(B-C)吗?增加第2小题的主要目的是加
44、强学生对三角形内、外角性质的综合运用能力。探索提高做一做在一张白纸上画出如图2所示图形,把1、2、3剪下来拼在一起,看看会出现什么结果,你能说说理由吗1、 说一说在上图中,1+=,2+ =,3+=,三式相加可以得到1+2+3+=而ACB+BAC+ABC=,把和作比较,你能得到什么结论?2、 你还有更好的说理方法吗?了解三角形外角和等于360度,为后面学习多边形做铺垫。渗透数形结合的数学思想方法。提高学生的“说理”能力小结与作业课堂小结引导学生小组合作交流:1、 三角形的内角和与外角和各是多少?2、 三角形的外角有哪些性质?发挥学生主体意识,培养学生语言概括能力。本课作业全等三角形教学目标1知道
45、什么是全等形、全等三角形及全等三角形的对应元素;2知道全等三角形的性质,能用符号正确地表示两个三角形全等;3能熟练找出两个全等三角形的对应角、对应边教学重点全等三角形的性质教学难点找全等三角形的对应边、对应角教学过程提出问题,创设情境1、问题:你能发现这两个三角形有什么美妙的关系吗?这两个三角形是完全重合的2学生自己动手(同桌两名同学配合)取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样3获取概念让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号形状与大小都完全相同的两个图形就是全等形要是把两个图形放在一起
46、,能够完全重合,就可以说明这两个图形的形状、大小相同概括全等形的准确定义:能够完全重合的两个图形叫做全等形请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义仔细阅读课本中“全等”符号表示的要求导入新课将ABC沿直线BC平移得DEF;将ABC沿BC翻折180°得到DBC;将ABC旋转180°得AED议一议:各图中的两个三角形全等吗?不难得出:ABCDEF,ABCDBC,ABCAED(注意强调书写时对应顶点字母写在对应的位置上)启示:一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方
47、法寻求全等的一种策略观察与思考:寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢?(引导学生从全等三角形可以完全重合出发找等量关系)得到全等三角形的性质:全等三角形的对应边相等全等三角形的对应角相等例1如图,OCAOBD,C和B,A和D是对应顶点,说出这两个三角形中相等的边和角问题:OCAOBD,说明这两个三角形可以重合,思考通过怎样变换可以使两三角形重合?将OCA翻折可以使OCA与OBD重合因为C和B、A和D是对应顶点,所以C和B重合,A和D重合C=B;A=D;AOC=DOBAC=DB;OA=OD;OC=OB总结:两个全等的三角形经过一定的转换可以重合一般是平移、翻转、旋转的方
48、法例2如图,已知ABEACD,ADE=AED,B=C,指出其他的对应边和对应角分析:对应边和对应角只能从两个三角形中找,所以需将ABE和ACD从复杂的图形中分离出来根据位置元素来找:有相等元素,它们就是对应元素,然后再依据已知的对应元素找出其余的对应元素常用方法有:(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边(2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角解:对应角为BAE和CAD对应边为AB与AC、AE与AD、BE与CD例3已知如图ABCADE,试找出对应边、对应角(由学生讨论完成)借鉴例2的方法,可以发现A=A,在两个三角形中A的对边分别是BC和D
49、E,所以BC和DE是一组对应边而AB与AE显然不重合,所以AB与AD是一组对应边,剩下的AC与AE自然是一组对应边了再根据对应边所对的角是对应角可得B与D是对应角,ACB与AED是对应角所以说对应边为AB与AD、AC与AE、BC与DE对应角为A与A、B与D、ACB与AED做法二:沿A与BC、DE交点O的连线将ABC翻折180°后,它正好和ADE重合这时就可找到对应边为:AB与AD、AC与AE、BC与DE对应角为A与A、B与D、ACB与AED课堂练习课本练习1课时小结通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用性质可以找到两个全等三角形的对应元素这也是大家要重
50、点掌握的找对应元素的常用方法有两种:(一)从运动角度看1翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素2旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素3平移法:沿某一方向推移使两三角形重合来找对应元素(二)根据位置元素来推理1全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边2全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角作业课本习题11.1 1、2、3板书设计§111 全等三角形一、概念二、全等三角形的性质三、性质应用例1:(运动角度看问题)例2:(根据位置来推理)例3:(根据位置和运动角度两种办法来推理)四、小结:找
51、对应元素的方法运动法:翻折、旋转、平移位置法:对应角对应边,对应边对应角全等三角形教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。2、能正确表示两个全等三角形,能找出全等三角形的对应元素。二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。教学重点1、全等三角形的性质。2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。教学难点正确寻找全等三角形的对应元素教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。课前准备:教师-课件、三角板、一对全等三角形硬纸版学生-白纸一张硬纸三角形一个教学过程全等形和全等三角形的概念(一)导课:教师-(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年个人股权委托管理转让合同范本3篇
- 2025年度个人合伙退伙合同范本精要3篇
- 现代社会生活中的常见隐患及其家庭预防策略研究报告
- 智慧医疗与健康科技的发展
- 二零二五年度车间承包与安全生产责任合同4篇
- 游戏化学习小学生注意力培养的新模式
- 网络安全技术与隐私保护措施研究
- 2025年度虚拟现实体验店租赁合同
- 网络环境下家庭信息的安全存储与分享策略
- 玉林2025年广西玉林市第一人民医院招聘24人笔试历年参考题库附带答案详解
- 基于视觉的工业缺陷检测技术
- 案例分析:美国纽约高楼防火设计课件
- 老客户维护方案
- 高处作业安全教育培训讲义课件
- 移动商务内容运营(吴洪贵)任务一 用户定位与选题
- 万科物业管理公司全套制度(2016版)
- 2021年高考化学真题和模拟题分类汇编专题20工业流程题含解析
- 工作证明模板下载免费
- (完整word)长沙胡博士工作室公益发布新加坡SM2考试物理全真模拟试卷(附答案解析)
- 机械点检员职业技能知识考试题库与答案(900题)
- 成熙高级英语听力脚本
评论
0/150
提交评论