高中数学导数及其应用 123 简单复合函数的导数习题 苏教版选修22_第1页
高中数学导数及其应用 123 简单复合函数的导数习题 苏教版选修22_第2页
高中数学导数及其应用 123 简单复合函数的导数习题 苏教版选修22_第3页
高中数学导数及其应用 123 简单复合函数的导数习题 苏教版选修22_第4页
高中数学导数及其应用 123 简单复合函数的导数习题 苏教版选修22_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.2.3简单复合函数的导数明目标、知重点1.了解复合函数的概念,掌握复合函数的求导法则.2.能够利用复合函数的求导法则,并结合已经学过的公式、法则进行一些复合函数的求导(仅限于形如f(axb)的导数)1复合函数的概念一般地,对于两个函数yf(u)和ug(x),如果通过变量u,y可以表示成 x的函数,那么称这个函数为yf(u)和ug(x)的复合函数,记作yf(g(x)2复合函数的求导法则复合函数yf(g(x)的导数和函数yf(u),ug(x)的导数之间的关系为yxyu·ux.即y对x的导数是y对u的导数与u对x的导数的乘积探究点一复合函数的定义思考1观察函数y2xcos x及yln(

2、x2)的结构特点,说明它们分别是由哪些基本函数组成的?答y2xcos x是由u2x及vcos x相乘得到的;而yln(x2)是由ux2与yln u(x>2)经过“复合”得到的,即y可以通过中间变量u表示为自变量x的函数,所以yln(x2)称为复合函数思考2对一个复合函数,怎样判断函数的复合关系?答复合函数是因变量通过中间变量表示为自变量的函数的过程在分析时可以从外向里出发,先根据最外层的主体函数结构找出yf(u);再根据内层的主体函数结构找出函数ug(x),函数yf(u)和ug(x)复合而成函数yf(g(x)思考3在复合函数中,内层函数的值域A与外层函数的定义域B有何关系?答AB.小结要

3、特别注意两个函数的积与复合函数的区别,对于复合函数,要掌握引入中间变量,将其分拆成几个基本初等函数的方法例1指出下列函数是怎样复合而成的:(1)y(35x)2;(2)ylog3(x22x5);(3)ycos 3x.解(1)y(35x)2是由函数yu2,u35x复合而成的;(2)ylog3(x22x5)是由函数ylog3u,ux22x5复合而成的;(3)ycos 3x是由函数ycos u,u3x复合而成的反思与感悟分析函数的复合过程主要是设出中间变量u,分别找出y和u的函数关系,u和x的函数关系跟踪训练1指出下列函数由哪些函数复合而成:(1)yln ;(2)yesin x;(3)ycos (x1

4、)解(1)yln u,u;(2)yeu,usin x;(3)ycos u,ux1.探究点二复合函数的导数思考如何求复合函数的导数?答对于简单复合函数的求导,其一般步骤为“分解求导回代”,即:(1)弄清复合关系,将复合函数分解成基本初等函数形式;(2)利用求导法则分层求导;(3)最终结果要将中间变量换成自变量注意不要漏掉第(3)步回代的过程例 2求下列函数的导数:(1)y(2x1)4;(2)y;(3)ysin(2x);(4)y102x3.解(1)原函数可看作yu4,u2x1的复合函数,则yxyu·ux(u4)·(2x1)4u3·28(2x1)3;(2)y(12x)可

5、看作yu,u12x的复合函数,则yxyu·ux()u·(2)(12x);(3)原函数可看作ysin u,u2x的复合函数,则yxyu·uxcos u·(2)2cos(2x)2cos(2x);(4)原函数可看作y10u,u2x3的复合函数,则yxyu·ux10u·ln 10·2(ln 100)102x3.反思与感悟分析复合函数的结构,找准中间变量是求导的关键,要善于把一部分量、式子暂时看作一个整体,并且它们必须是一些常见的基本函数复合函数的求导熟练后,中间步骤可以省略,不必再写出函数的复合过程,直接运用公式,从外层开始由外及内

6、逐层求导跟踪训练2求下列函数的导数:(1)y(2x3)2;(2)ye0.05x1;(3)ysin(x)解(1)函数y(2x3)2可以看成函数yu2,u2x3的复合函数yxyu·ux(u2)·(2x3)2u·24(2x3)8x12.(2)函数ye0.05x1可以看成函数yeu,u0.05x1的复合函数yxyu·ux(eu)·(0.05x1)0.05eu0.05 e0.05x1.(3)函数ysin(x)可以看成函数ysin u,ux的复合函数yxyu·ux(sin u)·(x)cos u·cos(x)探究点三复合函数导

7、数的应用例 3求曲线ye2x1在点(,1)处的切线方程解ye2x1·(2x1)2e2x1,y|x2,曲线ye2x1在点(,1)处的切线方程为y12(x),即2xy20.反思与感悟求曲线切线的关键是正确求复合函数的导数,要注意“在某点处的切线”与“过某点的切线”两种不同的说法跟踪训练3曲线yesin x在(0,1)处的切线与直线l平行,且与l的距离为,求直线l的方程解设usin x,则y(esin x)(eu)(sin x).cos xesin x.y|x01.则切线方程为y1x0,即xy10.若直线l与切线平行可设直线l的方程为xyc0.两平行线间的距离dc3或c1.故直线l的方程为

8、xy30或xy10.1函数y(3x2)2的导数y_.答案18x12解析y2(3x2)·(3x2)6(3x2)2若函数ysin2x,则y_.答案sin 2x解析y2sin x·(sin x)2sin x·cos xsin 2x.3若f(x)sin(3x),则f()_.答案3解析f(x)3cos(3x),f()3.4(1)设函数f(x)exex,证明:f(x)的导数f(x)2;(2)设函数f(x)xln(x5),g(x)ln(x1),解不等式f(x)>g(x)(1)证明f(x)(exex)exex,因为ex>0,ex>0,所以exex22,当且仅当e

9、xex,即e2x1,x0时,等号成立,所以f(x)2.(2)解因为f(x)1,g(x),所以由f(x)>g(x),得1>,即>0,所以x>5或x<1.又两个函数的定义域为,即x>5,所以不等式f(x)>g(x)的解集为(5,)呈重点、现规律求简单复合函数f(axb)的导数,实质是运用整体思想,先把简单复合函数转化为常见函数yf(u),uaxb的形式,然后再分别对yf(u)与uaxb分别求导,并把所得结果相乘灵活应用整体思想把函数化为yf(u),uaxb的形式是关键.一、基础过关1函数y的导数y_.答案解析y·(3x1).2函数yx2cos 2

10、x的导数y_.答案2xcos 2x2x2sin 2x解析y(x2)cos 2xx2(cos 2x)2xcos 2xx2·(2sin 2x)2xcos 2x2x2sin 2x.3若f(x)log3(x1),则f(2)_.答案解析f(x)log3(x1),f(2).4函数y(2 0158x)3的导数y_.答案24(2 0158x)2解析y3(2 0158x)2×(2 0158x)3(2 0158x)2×(8)24(2 0158x)2.5曲线ycos(2x)在x处切线的斜率为_答案2解析y2sin(2x),切线的斜率k2sin(2×)2.6函数yx(1ax)2

11、(a>0),且y|x25,则实数a的值为_答案1解析y(1ax)2x(1ax)2(1ax)2x2(1ax)(a)(1ax)22ax(1ax)由y|x2(12a)24a(12a)12a28a15(a>0),解得a1.7求下列函数的导数:(1)y(12x2)8;(2)y;(3)ysin 2xcos 2x;(4)ycos x2.解(1)设yu8,u12x2,y(u8)(12x2)8u7·4x8(12x2)7·4x32x(12x2)7.(2)设yu,u1x2,则y(u)(1x2)(u)·(2x)x(1x2).(3)y(sin 2xcos 2x)(sin 2x)

12、(cos 2x)2cos 2x2sin 2x2sin(2x)(4)设ycos u,ux2,则y(cos u)·(x2)(sin u)·2x(sin x2)·2x2xsin x2.二、能力提升8已知直线yx1与曲线yln(xa)相切,则a的值为_答案2解析设直线yx1切曲线yln(xa)于点(x0,y0),则y01x0,y0ln(x0a),又y,y|xx01,即x0a1.又y0ln(x0a),y00,x01,a2.9曲线yex在点(4,e2)处的切线与坐标轴所围三角形的面积为_答案e2解析yex·,y|x4e2.曲线在点(4,e2)处的切线方程为ye2e2

13、(x4),切线与坐标轴的交点分别是(0,e2),(2,0),则切线与坐标轴围成的三角形面积S|e2|2|e2.10若f(x)(2xa)2,且f(2)20,则a_.答案1解析f(x)2(2xa)·24(2xa),f(2)164a20,a1.11已知a>0,f(x)ax22x1ln(x1),l是曲线yf(x)在点P(0,f(0)处的切线求切线l的方程解f(x)ax22x1ln(x1),f(0)1.f(x)2ax2,f(0)1,切点P的坐标为(0,1),l的斜率为1,切线l的方程为xy10.12.有一把梯子贴靠在笔直的墙上,已知梯子上端下滑的距离S(单位:m)关于时间t(单位:s)的函数为SS(t)5.求函数在t s时的导数,并解释它的实际意义解函数S5可以看作函数S5和x259t2的复合函数,其中x是中间变量由导数公式表可得Sxx,xt18t.故由复合函数求导法则得StSx·xt(x)·(18t),将t代入S(t),得S()0.875 (m/s)它表示当t s时,梯子上端下滑

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论