![控制工程基础上机练习指导_第1页](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/3f642a39-97c1-4e8e-9f55-1caea6a286e4/3f642a39-97c1-4e8e-9f55-1caea6a286e41.gif)
![控制工程基础上机练习指导_第2页](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/3f642a39-97c1-4e8e-9f55-1caea6a286e4/3f642a39-97c1-4e8e-9f55-1caea6a286e42.gif)
![控制工程基础上机练习指导_第3页](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/3f642a39-97c1-4e8e-9f55-1caea6a286e4/3f642a39-97c1-4e8e-9f55-1caea6a286e43.gif)
![控制工程基础上机练习指导_第4页](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/3f642a39-97c1-4e8e-9f55-1caea6a286e4/3f642a39-97c1-4e8e-9f55-1caea6a286e44.gif)
![控制工程基础上机练习指导_第5页](http://file3.renrendoc.com/fileroot_temp3/2022-2/19/3f642a39-97c1-4e8e-9f55-1caea6a286e4/3f642a39-97c1-4e8e-9f55-1caea6a286e45.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、控制工程基础上机练习指导 机械工程学院第一部分 二阶系统的阶跃响应练习一 二阶系统的matlab仿真一、操作步骤1、启动matlab6.5.1/7.0.1,单击仿真 (simulink)按钮;2、创建一个new model 文件,然后进行以下步骤:在信号源(sources)中,用左键将阶跃信号发生器(step)拖到new model内;拖sinks中示波器(scope)到new model内;在连续系统(couninous)内,拖传递函数(transfer F cn)到new model内。将step、transfer F cn和scope依次连接(法一:光标变成+时,拖动使其连接;法二:单击
2、其一,按住ctrl,再单击一下框)。3、各环节的设置双击step,设置其属性:step time=0;初值为0;终值为1,采样时间为0;双击系统框,可依次设置传函的分子、分母系数。如对二阶系统,可使numerater=4;denominator=1 5 6;双击scope,调整其大小;4、单击new model中的运行按钮,即可从示波器中看到该二阶系统的阶跃响应(单击望远镜按钮可进行满屏显示)。二、练习题:对典型环节二阶系统,分别选择下表中的参数值,观察示波器输出,分析并比较两个参数对二阶系统阶跃响应的影响(五个响应指标)。频率输出阻尼比210.50.100.20.41.0注:系统的结构有多种
3、表达方式(如零、极点模式等)。对一阶系统也可进行上面的操作,但其只有一个参数。示例:得结果如下:练习二 利用简单程序熟悉阻尼系数变化对二阶系统脉冲响应的影响一、任务:对典型二阶系统1、 已知,绘出,0.4,0.7,1时;连续系统的脉冲响应曲线;2、 绘制当采样周期时,离散系统的脉冲响应曲线。二、对所用编程语句的简单说明:² clear:清除内存变量和函数;clf:清除图对象;² zeta=0.1:0.3:1:zeta=,从0开始,增量为0.3,到1;² num,den=ord2(,z):定义二阶系统参数;s=tf(num,den):建立二阶连续系统;²
4、Sd=c2d(S,):建立以为采样周期的采样系统;² figure(1),impulse(S,2),hold on:作图1,时间为2的脉冲响应,并保持该曲线;² figure(2),impulse(Sd,2),hold on:作图2,采样系统的脉冲响应,并保持该曲线;二、建立Matlab程序1.m(filenewMfile);或者直接在command window中运行。clear,clfwn=10,Ts=0.1 for zeta=0.1:0.3:1 num,den=ord2(wn,zeta); s=tf(num,den); sd=c2d(s,Ts) figure(1),i
5、mpulse(s,2),hold on figure(2),impulse(sd,2),hold onendhold off 得到两个图像,也可以把两个图像画在一起。分别改变和值,然后运行以上程序。第二部分 系统的频率响应一、控制工具箱中的频域分析函数bode(sys);mag,phase,w= bode(sys):绘制bode图;fres=evalfr(sys,f):计算系统单个复频率点的频率响应;H=freqresp(sys,w):计算系统在给定实频率区间的频率响应;Gm,Pm,wcg,wcp=margin(sys):计算系统的增益和相位裕度;ngrid:Nichols网格图绘制;nich
6、ols(sys):Nichols图绘制;nyquist(sys):Nyquist图绘制;Sigma(sys):系统奇异值bode图绘制(鲁棒控制中);二、练习示例例1:对练习二中的二阶系统,分别求连续、离散两种情况下系统的bode图。新建x2.m文件如下:clear, clf,wn=10;for zeta=0.1:0.3:1 num,den=ord2(wn,zeta); s1=tf(num,den); sd1=c2d(s1,0.1); figure(1),bode(s1),hold on figure(2),bode(sd1),hold onendhold off另外,在图2后还可加以下语句:
7、figure(3),ngrid(s1),hold on /得s1的Nichols网格图figure(3),nyquist(s1),hold on /得s1的nyquist图figure(3),nichols(s1),hold on /得s1的Nichols图例2:利用计算机CAD方法作出下面系统的伯德图,分析系统各环节伯德图及其叠加后的总伯德图:,标准化得:程序x3.m如下:clear, clfg0=tf(24,1); g1=tf(0.25,0.5,1);g2=tf(1,5,2);g3=tf(1,0.05,2);g=tf(conv(24,0.25,0.5),conv(5,2,0.05,2);w
8、=logspace(0,3);hold on;figure(1);bode(g0,'k-');bode(g1,'k.');bode(g2,'k+');bode(g3,'k-');bode(g,'k*');xlabel('w(rad/s)','Fontsize',12);ylabel('(w)L(w)','Fontsize',12);练习三 高阶系统时间响应的计算机求解例:某系统的传递函数为,求其单位阶跃响应。程序x4.m如下:bm=6,1,6,10;
9、as=1,2,3,1,1; g=tf(bm,as); figure(1);step(g); Xlabel('时间t','FontSize',12)Ylabel('响应y','FontSize',12)第三部分 nyquist 曲线及其稳定判据例1:设系统开环传递函数为:1、 此开环系统有一极点位于复平面右半平面(s=1.2),故系统不稳定。画出其nyquist图、开环脉冲响应曲线、bode 图及闭环脉冲响应图。2、 给系统加上一个零点(s+0.5)后,重复以上步骤,并对修正前后两系统特性进行比较。注:先建模,得系统s1。bode
10、图可用简略图的对数频率特性图margin代替。其闭环系统模型sb1可用反馈系统函数feedback得到,即sb1=feedback(s1,1)。程序x5.m如下:clear,s1=zpk(,-6,-1,1.2,50); /传递函数的零、极点增益模式,括号内依次为零点、极点、增益figure(1) /以下为图1,含4张子图(subplot)subplot(2,2,1);nyquist(s1),grid /绘制开环系统nyquist图,grid:带网络sb1=feedback(s1,1) /求对应的闭环系统 subplot(2,2,2);impulse(s1),grid /绘制s1的单位脉冲(im
11、pulse)响应曲线图subplot(2,2,3);margin(s1),grid /绘制s1的bode 图subplot(2,2,4); impulse (sb1),grid /绘制对应闭环系统nyquist图s2=zpk(-0.5,-6,-1,1.2,50); /加零点后传递函数的零、极点增益模式figure(2) /以下为图2subplot(2,2,1);nyquist(s2),grid sb2=feedback(s2,1) subplot(2,2,2);impulse(s2),grid subplot(2,2,3);margin(s2),grid subplot(2,2,4); imp
12、ulse (sb2),grids=5/s(s+2)(s+0.5)nyquist(s)G=zpk(,0,-2,50)nyquist(G)G=tf(50,1 2.5 1 0);nyquist(G)num=50;den=1 2.5 1 0nyquist(num,den)G=zpk(-0.05,0,0,0,-0.5,100) nyquist(G)教材第4章P136例5:G=zpk(-0.05,0,0,-0.5,100)nyquist(G)G=zpk(-0.05,0,-0.5,1)nyquist(G)G=zpk(-0.05,0,-0.5,0.1)nyquist(G)G=zpk(-0.02,0,-1,50
13、)nyquist(G)G=zpk(-0.02,0,-1,0.2)nyquist(G)G=zpk(-0.02,0,-0.5,0.2)nyquist(G)G=zpk(-0.5,0,-0.05,1)nyquist(G)G=zpk(-0.5,0,-0.05,0.1)nyquist(G)G=zpk(-0.5,0,-0.05,0.02)nyquist(G)G=zpk(-0.05,-0.5,100)nyquist(G)G=zpk(-0.05,0,-0.5,1)nyquist(G)G=zpk(-0.5,0,0,-0.05,1)nyquist(G)G=zpk(-0.5,0,0,-0.05,1)nyquist(G
14、)结果分析:1、在matlab界面右侧command window中给出了s1、s2的闭环零、极点增益模式:,。sb1因含实部大于0的极点而不稳定;sb2极点均小于零因而是稳定的,从第4子图可验证。2、由nyquist稳定养据,若开环系统有一极点位于复平面右半部分,则其开环nyquist图逆时针绕(-1,j0)点一圈时,对应的闭环系统是稳定了,系统s1之nyquist图是顺时针绕的,故不稳定,而系统s2则是稳定的。例2、设控制系统的开环传递函数为:,试求当k=10和k=100是时系统的相角储备和幅值储备,并分析影响系统稳定性的主要因素。从课程学习知,影响系统稳定性的主要因素有4:系统开环增益(
15、降低时可提高系统的相对稳定性);积分环节(系统型次越高越不易稳定);系统固有频率和阻尼比(对高阶系统,系统固有频率越高,阻尼比越大,系统稳定性储备越大);延时环节和非最小相位环节。程序x6.m如下:gh=tf(conv(10,1,0),conv(1,1,1,5);sys=feedback(gh,1);z=zero(sys)p=pole(sys)ii=find(real(p)>0),n1=length(ii);ij=find(real(z)>0),n2=length(ij);if(n1>0),disp('系统不稳定!');. else,disp('系统稳
16、定!');endif(n2>0),disp('系统不是最小相位系统!');. else,disp('系统是最小相位系统!');endmargin(gh);Gm,Pm,Wcg,Wcp=margin(gh);PGm=num2str(20*log10(Gm);PPm= num2str(Gm);Gms=char('系统的幅值裕量为',PGm);Pms=char('系统的相位裕量为', PPm);disp(Gms); disp(Pms)改变k=100,重复以上程序。第四部分 控制系统的校正一、上机内容1、 利用课本上所学方法,
17、对不稳定或稳定性裕量不满足要求的系统进行校正,并分别绘制系统在校正前后的N氏图、bode图。2、 验证教材中例题或作业题中的结论。二、练习下面的内容1、 例1:对开环系统,分别求其连续、离散系统在开环、闭环情况下的频率特性及稳定性。所用新函数如下:² damp(s):求极点² Gm,Pm,Wcg,Wcp=margin(s):判定系统的稳定性裕度,返回对应的幅值、相位裕量和交界/剪切频率值。程序x7.m如下:clearTs=0.1s=zpk(-6,0,-1,-10,-10,200) /建立开环系统模型ssd=c2d(s,Ts) /对开环系统模型s以采样频率Ts离散化得系统sd
18、sb=feedback(s,1) /得闭环系统sbsbd=feedback(sd,1) /对闭环系统模型sb以采样频率Ts离散化得系统sbdfigure(1),bode(s,-,sb,.-)figure(2),bode(sd,-,sbd,.-)damp(sb)damp(sbd)Gm,Pm,Wcg,Wcp=margin(s)Gmd,Pm,dWcgd,Wcpd=margin(sd)结论分析:本题中的连续系统是稳定的,但裕量较小;对应的离散系统是不稳定的,因其根的模大于1。2、 例2:对开环不稳定系统,画出其N氏图并判其闭环系统稳定性。在加一零点(s+0.5)后画出其N氏图并判其闭环系统稳定性。程序
19、x8.m如下:clear,s1=zpk(,-6,-1,1.2,50); /传递函数的零、极点增益模式sb1=feedback(s1,1) /求对应的闭环系统 figure(1) /以下为图1subplot(2,2,1);nyquist(s1),grid /绘制开环系统nyquist图,grid:带网络subplot(2,2,2);impulse(s1),grid /绘制s1的单位脉冲(impulse)响应曲线图subplot(2,2,3);margin(s1),grid /绘制s1的bode 图subplot(2,2,4); impulse (sb1),grid /绘制对应闭环系统nyquis
20、t图Gm,Pm,Wcg,Wcp=margin(s1)s2=zpk(-0.5,-6,-1,1.2,50); /加零点后传递函数的零、极点增益模式sb2=feedback(s2,1) figure(2) /以下为图2subplot(2,2,1);nyquist(s2),grid subplot(2,2,2);impulse(s2),grid subplot(2,2,3);margin(s2),grid subplot(2,2,4); impulse (sb2),gridGm,Pm,Wcg,Wcp=margin(s2)结果分析:从系统脉冲响应或N氏图可知系统s1不稳定,s2稳定。本程序用带返回值的m
21、argin()函数可给出结论。3、 例3:对系统进行相位校正采用 bode图对系统进行超前校正见教材第183页的单位反馈系统,开环传函为。所采用的校正环节为。分别绘制校正前后开环系统N氏图、bode图、稳定性图,给出稳定性表示值,并利用单位脉冲响应进行稳定性验证。校正前后传递函数分析:先对原开环系统传函进行标准化:。校正后有程序x9.m如下:clear,s1=zpk(,0,-2,40); sb1=feedback(s1,1)figure(1)subplot(2,2,1);nyquist(s1),gridsubplot(2,2,2);bode(s1),gridsubplot(2,2,3);mar
22、gin(s1),gridsubplot(2,2,4); impulse (sb1),gridGm,Pm,Wcg,Wcp=margin(s1)s2=zpk(-1/0.23,0,-1/0.055,-2,1840/11); sb2=feedback(s2,1) figure(2)subplot(2,2,1);nyquist(s2),grid subplot(2,2,2); bode (s2),grid subplot(2,2,3);margin(s2),grid subplot(2,2,4); impulse (sb2),gridGm,Pm,Wcg,Wcp=margin(s2)结果分析:从figur
23、e(1)可知,校正前系统开环稳定,介相位裕量小(18º);经校正后的figure(2)上,相位裕量为50.5º,加大了带宽,也加快了系统的响应速度(figure(1)中单位脉冲响应在t=4s时接近稳定,而figure(2)中单位脉冲响应的过渡时间约为0.7s)。同时,由于系统的型次和增益都没有改变,所以稳态精度提高较少,采用 bode图对系统进行相位滞后校正(见教材)为减少系统稳态误差而又不影响其稳定性和响应的快速性,只要加大低频段的增益即可,为此可采用相位滞后校正。对第186页所示系统,确定开环增益K后,系统开环传递函数标准化后为:。所设计的校正环节为:,则校正后的传递函
24、数为:。同采用 bode图对系统进行超前校正,编写程序example4,分别用下面的系统模型代替example3中相应语句,并对照教材分析所得结果。s1=zpk(,0,-1,-2,10);s2=zpk(-0.1,0,-1,-2,-0.01,1);采用 bode图对系统进行相位超前-滞后校正(见教材)采用相位超前-滞后校正可综合相位超前校正和相位滞后两者的特点,可同时改善系统的动态性能和稳态性能。校正前系统传递函数为。所设计的校正环节为:,则校正后的传递函数为:同采用 bode图对系统进行超前校正类似,编写程序example5,分别用下面的系统模型代替example3中相应语句,并对照教材分析所
25、得结果。s1=zpk(,0,-1,-2,20);s2=zpk(-1/6.67,-1/1.43,0,-1,-2,-1/66.7,-1/0.143,10*6.67*1.43/0.5/66.7/0.143);clear,s1=zpk(,-6,-1,1.2,50); figure(1) subplot(2,2,1);nyquist(s1),grid sb1=feedback(s1,1) subplot(2,2,2);impulse(s1),grid subplot(2,2,3);margin(s1),grid subplot(2,2,4); impulse (sb1),grid s2=zpk(-0.5
26、,-6,-1,1.2,50); figure(2) subplot(2,2,1);nyquist(s2),grid sb2=feedback(s2,1) subplot(2,2,2);impulse(s2),grid subplot(2,2,3);margin(s2),grid subplot(2,2,4); impulse (sb2),gridclearTs=0.1s1=zpk(-6,0,-1,-10,-10,200) sd1=c2d(s1,Ts) sb1=feedback(s1,1) sbd1=feedback(sd1,1) figure(1),bode(s1,-,sb1,.-)figur
27、e(2),bode(sd1,-,sbd1,.-)damp(sb1)damp(sbd1)Gm,Pm,Wcg,Wcp=margin(s1)Gmd,Pm,dWcgd,Wcpd=margin(sd1)clear,s1=zpk(,-6,-1,1.2,50); sb1=feedback(s1,1) figure(1) subplot(2,2,1);nyquist(s1),grid subplot(2,2,2);impulse(s1),grid subplot(2,2,3);margin(s1),grid subplot(2,2,4); impulse (sb1),grid Gm,Pm,Wcg,Wcp=margin(s1)s2=zpk(-0.5,-6,-1,1.2,50); sb2=feedback(s2,1) figure(2) subplot(2,2,1);nyquist(s2),grid subplot(2,2,2);impulse(s2),grid subplot(2,2,3);margin(s2),grid subplot(2,2,4); impulse (sb2),gridGm,Pm,Wcg,Wcp=margin(s2)bm=6,1,6,10; as=1,2,3,1,1; g=tf(bm,as); figure(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 八项规定手写承诺书范本
- 手足口病防控培训课件
- 2025-2030全球等离子处理设备行业调研及趋势分析报告
- 2025-2030全球医用无纺布电极片行业调研及趋势分析报告
- 2025-2030全球锂电池用隔膜行业调研及趋势分析报告
- 2025年全球及中国发泡奶精行业头部企业市场占有率及排名调研报告
- 2025年全球及中国油炸方便面生产线行业头部企业市场占有率及排名调研报告
- 2025年全球及中国超薄壁PET热缩管行业头部企业市场占有率及排名调研报告
- 2025-2030全球耐高温耐火绝缘砖行业调研及趋势分析报告
- 2025-2030全球卫星锂离子电池行业调研及趋势分析报告
- 房地产调控政策解读
- 五年级数学(小数乘法)计算题专项练习及答案
- 产前诊断室护理工作总结
- 2024-2025学年八年级数学人教版上册寒假作业(综合复习能力提升篇)(含答案)
- 《AP内容介绍》课件
- 医生定期考核简易程序述职报告范文(10篇)
- 市政工程人员绩效考核制度
- 公园景区安全生产
- 安全创新创效
- 《中国糖尿病防治指南(2024版)》更新要点解读
- 初级创伤救治课件
评论
0/150
提交评论