高考数学复习导数大题附详细解答_第1页
高考数学复习导数大题附详细解答_第2页
高考数学复习导数大题附详细解答_第3页
高考数学复习导数大题附详细解答_第4页
高考数学复习导数大题附详细解答_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、例1.已知函数在区间,内各有一个极值点(I)求的最大值;(II)当时,设函数在点处的切线为,若在点处穿过函数的图象(即动点在点附近沿曲线运动,经过点时,从的一侧进入另一侧),求函数的表达式例2.函数的值域是_.例3已知函数,其中为参数,且(1)当时,判断函数是否有极值;(2)要使函数的极小值大于零,求参数的取值范围;例4已知函数在点处取得极大值,其导函数的图象经过点,.求:()的值;()的值.例5设是函数的一个极值点.()求与的关系式(用表示),并求的单调区间;()设,.若存在使得成立,求的取值范围例6已知函数在处取得极大值,在处取得极小值,且(1)证明;(2)若z=a+2b,求z的取值范围。

2、例7用长为18 cm的钢条围成一个长方体形状的框架,要求长方体的长与宽之比为2:1,问该长方体的长、宽、高各为多少时,其体积最大?最大体积是多少?例8统计表明,某种型号的汽车在匀速行驶中每小时的耗油量(升)关于行驶速度(千米/小时)的函数解析式可以表示为:已知甲、乙两地相距100千米.(I)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(II)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?1.已知函数,.()如果函数在上是单调增函数,求的取值范围;()是否存在实数,使得方程在区间内有且只有两个不相等的实数根?若存在,请求出的取值范围;若不存在,请说明理由

3、2.如果是函数的一个极值,称点是函数的一个极值点.已知函数(1)若函数总存在有两个极值点,求所满足的关系;(2)若函数有两个极值点,且存在,求在不等式表示的区域内时实数的范围.(3)若函数恰有一个极值点,且存在,使在不等式表示的区域内,证明:.3已知函数.(1)若函数是其定义域上的增函数,求实数的取值范围;(2)若是奇函数,且的极大值是,求函数在区间上的最大值;(3)证明:当时,.4已知实数a满足0a2,a1,设函数f (x)x3x2ax() 当a2时,求f (x)的极小值;() 若函数g(x)x3bx2(2b4)xln x(bR)的极小值点与f (x)的极小值点相同求证:g(x)的极大值小于

4、等于5/4例1解(I)因为函数在区间,内分别有一个极值点,所以在,内分别有一个实根,设两实根为(),则,且于是,且当,即,时等号成立故的最大值是16(II)解法一:由知在点处的切线的方程是,即,因为切线在点处空过的图象,所以在两边附近的函数值异号,则不是的极值点而,且若,则和都是的极值点所以,即,又由,得,故解法二:同解法一得因为切线在点处穿过的图象,所以在两边附近的函数值异号,于是存在()当时,当时,;或当时,当时,设,则当时,当时,;或当时,当时,由知是的一个极值点,则,所以,又由,得,故例3解()当时,则在内是增函数,故无极值.(),令,得.由(),只需分下面两种情况讨论.当时,随x的变

5、化的符号及的变化情况如下表:x0+0-0+极大值极小值因此,函数在处取得极小值,且.要使,必有,可得.由于,故.当时,随x的变化,的符号及的变化情况如下表:+0-0+极大值极小值因此,函数处取得极小值,且若,则.矛盾.所以当时,的极小值不会大于零.综上,要使函数在内的极小值大于零,参数的取值范围为.例4解法一:()由图像可知,在上,在上,在上,故在上递增,在上递减,因此在处取得极大值,所以()由得解得解法二:()同解法一()设又所以由即得所以例5解()f (x)x2(a2)xba e3x,由f (3)=0,得32(a2)3ba e330,即得b32a,则f (x)x2(a2)x32aa e3x

6、x2(a2)x33a e3x(x3)(xa+1)e3x.令f (x)0,得x13或x2a1,由于x3是极值点,所以x+a+10,那么a4.当a<4时,x2>3x1,则在区间(,3)上,f (x)<0,f (x)为减函数;在区间(3,a1)上,f (x)>0,f (x)为增函数;在区间(a1,)上,f (x)<0,f (x)为减函数.当a>4时,x2<3x1,则在区间(,a1)上,f (x)<0,f (x)为减函数;在区间(a1,3)上,f (x)>0,f (x)为增函数;在区间(3,)上,f (x)<0,f (x)为减函数.()由()

7、知,当a>0时,f (x)在区间(0,3)上的单调递增,在区间(3,4)上单调递减,那么f (x)在区间0,4上的值域是min(f (0),f (4) ),f (3),而f (0)(2a3)e3<0,f (4)(2a13)e1>0,f (3)a6,那么f (x)在区间0,4上的值域是(2a3)e3,a6.又在区间0,4上是增函数,且它在区间0,4上的值域是a2,(a2)e4,由于(a2)(a6)a2a()20,所以只须仅须(a2)(a6)<1且a>0,解得0<a<.故a的取值范围是(0,).例6解()由函数在处取得极大值,在处取得极小值,知是的两个根所

8、以当时,为增函数,由,得()在题设下,等价于即化简得此不等式组表示的区域为平面上三条直线:所围成的的内部,其三个顶点分别为:ba2124O在这三点的值依次为所以的取值范围为例7.解设长方体的宽为x(m),则长为2x(m),高为.故长方体的体积为从而令V(x)0,解得x=0(舍去)或x=1,因此x=1.当0x1时,V(x)0;当1x时,V(x)0,故在x=1处V(x)取得极大值,并且这个极大值就是V(x)的最大值。从而最大体积VV(x)9×12-6×13(m3),此时长方体的长为2 m,高为1.5 m.答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体

9、积为3 m3。例8解(I)当时,汽车从甲地到乙地行驶了小时,要耗没(升).答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油升。(II)当速度为千米/小时时,汽车从甲地到乙地行驶了小时,设耗油量为升,依题意得令得当时,是减函数;当时,是增函数.当时,取到极小值因为在上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为升.1解:()当时,在上是单调增函数,符合题意当时,的对称轴方程为,由于在上是单调增函数,所以,解得或,所以当时,不符合题意综上,的取值范围是()把方程整理为,即为方程. 设,原方程在区间()内有且只有两个不相等的实数根

10、, 即为函数在区间()内有且只有两个零点. 令,因为,解得或(舍)当时, , 是减函数;当时, ,是增函数. 在()内有且只有两个不相等的零点, 只需即解得, 所以的取值范围是() 2(1)令得又(2)在有两个不相等的实根.即得(3)由当在左右两边异号是的唯一的一个极值点由题意知即即存在这样的的满足题意符合题意当时,即这里函数唯一的一个极值点为由题意即即综上知:满足题意的范围为. 3解:(1),所以,由于是定义域内的增函数,故恒成立,即对恒成立,又(时取等号),故.(2)由是奇函数,则对恒成立,从而,所以,有. 由极大值为,即,从而;因此,即,所以函数在和上是减函数,在上是增函数.由,得或,因

11、此得到:当时,最大值为;当时,最大值为;当时,最大值为.(3)问题等价于证明对恒成立;,所以当时,在上单调减;当时,在上单调增;所以在上最小值为(当且仅当时取得)设,则,得最大值(当且仅当时取得),又得最小值与的最大值不能同时取到,所以结论成立.4() 解: 当a2时,f(x)x23x2(x1)(x2) 列表如下:x(,1)1(1,2)2(2,)f(x)00f (x)单调递增极大值单调递减极小值单调递增所以,f(x)极小值为f(2) ()解:f(x)x2(a1)xa(x1)(xa)g(x)3x22bx(2b4)令p(x)3x2(2b3)x1, (1) 当 1a2时,f(x)的极小值点xa,则g(x)的极小值点也为xa,所以p(a)0,即3a2(2b3)a10,即b,此时g(x)极大值g(1)1b(2b4)3b3 由于1a2,故 2(2)当0a1时,f(x)的极小值点x1,则g(x)的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论