关于参数型copula函数的拟合检验-_第1页
关于参数型copula函数的拟合检验-_第2页
关于参数型copula函数的拟合检验-_第3页
关于参数型copula函数的拟合检验-_第4页
关于参数型copula函数的拟合检验-_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、J.Sys.Sci.&Math.Scis.27(1(2007,2,93101copula(200062(200062;999077copulacopula copulacopulacopulaMR(200062G101copulacopula(the Curse of Dimensionality.14 Sklars(copula copulacopula5,6.(7,8.tcopula*2006-10-05.9427copulaH 0:C (;0C =C (;:,(1Ccopula9Archimedean copula10Kendalls taucopula11(the Probality

2、Integral Transform,12Anderson Darling type13“”;14copula15copula=0T n =nC n (u,v C (u,v ;0S n =T 2n (u,v d u d vC n (u,v 2copula 16(P.389T n17T nS nS n =T 2n (u,v d u d v121nn312342copula(X,Y H (x,y ,F (x =H (x,G (y =H (,y .SklarcopulaH (x,y =C (F (x ,G (y .(2F (u =inf x R |F (x u G (v =inf y R |G (y

3、 v (0u,v 1F (G (R(,+.(2C (u,v =H F (u ,G (v ,0u,v 1.(31copula95(x 1,y 1,(x 2,y 2,(x n ,y n (X,Y nH n (x,y =1nn i =1I x i x,y i y ,F n (x =H n (x,+G n (y =H n (+,y .copulaC n (u,v =H n (F n (u ,G n (v ,F n (u =inf s R |F n (s u G n (v =inf t R |G n (t v F n (x G n (y copula18,19,C n (u,v =1n ni =1I F

4、 n (x i u,G n (y i v .(4nF n (x i x ix 1,x 2,x nnG n (y i y iy 1,y 2,y nC n (17sup0u,v 1 C n (u,v C n(u,v 2n .(5(1S n =T 2n (u,v d u d v,T n =n (C n (u,v C (u,v ;.T nS ncopulaT nS nAA ,u vuvU C (u,v =B C (u,v C 1(u,v B C (u,1C 2(u,v B C (1,v ,B CE B C (u,v B C (u ,v=C (u u ,v v C (u,v C (u ,v .C 1(u

5、,v C 2(u,v (A2(A1f (g (A2copulaC (u,v ;C 1(u,v =C (u,v ;uC 2(u,v =C (u,v ;v,c (u,v ;(A3R q=1n ni =1L (F (X i ,G (Y i ;+o p (1,L (F (X ,G (Y ;q=E (L (F (X ,G (Y ;L T (F (X ,G (Y ;.(A1(A2(A313(A3:=1n A (1n i =1ln c (F (x i ,G (x i ;+O p ln(ln n n,A (=lim n E2Q n (Tq qQ n (=1nn i =1ln c (F n (x i ,G n

6、(x i ;.96272.1(A1(A3(1copulaT n(0,12G C =U C CT V,V.S nS =(G C (u,v 2d u d v .G CE (G C (u,v G C (u ,v =E (U C (u,v U C (u ,v +C (u,v T C (u ,v C (u,v T E (U C(u ,v V C (u ,vTE (U C (u,v V ,E (U C (u,v V =0,u 0,v L (s,t ;d C (s,t ;+C 1(u,v 0,u 0,1L (s,v ;d C (s,v ;+C 2(u,v 0,10,v L (u,t ;d C (u,t ;.

7、2.1,(i.i.dT nT n =n (C n (u,v C (u,v ;=n (C (u,v ;C (u,v +n (C n (u,v C (u,v =J 1+J 2,C (u,v copula2.1J 1=1n C (u,v ;Tni =1LF (X i ,G (Y i ; +o P (1.(6J 2.copula(3(4,n (C n (u,v C (u,v =1n n i =1I F n (X i u,G n (Y i v I F (X i u,G (Y i v +I F (X i u,G (Y i v C (u,v =1n ni =1I F n (X i u,G n (Y i v

8、I F (X i u,G (Y i v (H (F n (u ,G n (v H (F (u ,G (v +1n ni =1(I F (X i u,G (Y i v C (u,v +n (H (F n (u ,G n (v H (F (u ,G (v =V 1+V 2+V 3.n (H n (H (5V 1=o P (1.(71copula97V 2i.i.dV 3.n (H (F n (u ,G n (v H (F (u ,G (v =n (C (F (F n (u ,G (G n (v C (u,v =nC 1(u,v (F (F n (u u +nC 2(u,v (G (G n (v v

9、 +o p (1=nC 1(u,v (u F n (F (u +nC 2(u,v (v G n (G (v +o p (1=C 1(u,v 1n n i =1(I F n (X i u u C 2(u,v 1n ni =1(I G n (Y i v v +o p (1.(8(6(820(P.157VII.21,2.1.copulaC (;W (;,W (1,0;=0=W (0,1;,W (1,u ;=0=W (v,1;.C (=C (;+W (;n ,0.(9nC (C (u 2,v 2C (u 2,v 1C (u 1,v 2+C (u 1,v 1(u 1u 2,v 2v 1C (copula

10、012=121n2.2(A1(A3(9012T n;=12,T n(0,12G C +W ,S n(G C (u,v +W (u,v ;2d u d v .2.1(9T n =n C n (u,v C (u,v ; W (u,v ; n +W (u,v ;n 12=J 3+J 4.J 3(0,12G C ,012=12J 4W (.copulaH 0S n2.1321S n222498 27 23 Rademacher Rademacher 1 1 , 2, , n i.i.d Rademacher (x1 , y1 , (x2 , y2 , , (xn , yn 2.1 Tn Tn (n ,

11、 u, v 1 = n n i (IFn (Xi u,Gn (Yi v i=1 n i=1 n i=1 Cn (u, v n i (IGn (Yi v i=1 1 C1n (u, v n C(u, v 1 T n 1 i (IFn (Xi u u C2n (u, v n i L(F (Xi , G(Yi ; |= , v 0 u, v 1. n =( 1 , 2 , , n T , C1n C2n C1 C2 copula H(F (u,G (v H(F (u,G (v (3, C1 (u, v = x C2 (u, v = y . f (F (v g(G (u H (F (u,G (v C1

12、n C2n C1n (u, v = x f (F (v H (F (u,G (v C2n (u, v = y . Hn (, fn ( gn ( H( g (G (u f ( g( ( 25. n n n n n n n n n n Sn (n = 2 Tn (n , u, vdudv. Step 1 Step 2 (i Sn (n , m . Rademacher (i = ( (i , n 1 ppn = k (m+1 , (i (i 2 , , n , i = 1, 2, , m. i = 1, 2, , m. Step 3 Sn . (0 0 k = #Sn (i Sn , i = 0

13、, 1, , m(Sn = n 4 13, C (u, v, = uv copula (expu 1(expv 1 1 ln 1 + , exp 1 = 0, 0, 1. (10 copula copula Franks copula copula ( = 0, 6 13. , (A3. C1 C2 (Gaussian product kernel, 1 ( n copula 9 100. 99 5%, 3 (rejecting rate, 1 n = 100 m 1000, 1000 p 1 p 0.05 5 10 0 15 20 25 5 10 (S 0.00 0.00 0.00 0.00

14、 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.17 0.31 0.03 0.13 0.18 0.57 0.84 0.07 0.19 0.58 0.89 0.95 0.02 0.03 0.06 0.02 0.37 (1000 . (Sn 0.02 0.00 0.00 0.00 0.04 0.04 0.05 0.07 0.23 0.38 0.05 0.10 0.30 0.50 0.66 0.10 0.25 0.57 0.80 0.91 0.11 0.34 0.63 0.84 0.96 0.11 0.13 0.14 0.16 0.13 (T 0.02

15、 0.00 0.01 0.01 0.08 0.00 0.00 0.07 0.22 0.60 0.01 0.05 0.36 0.80 0.95 0.03 0.21 0.67 0.95 1.00 0.12 0.33 0.71 0.98 1.00 0.01 0.00 0.00 0.02 0.03 0.1 15 20 25 5 10 0.2 15 20 25 5 10 0.3 15 20 25 5 10 0.5 15 20 25 5 10 0.9 15 20 25 1 = 0, 13 = 0.5 S T, 100 27 = 25 = 0.5 1 X Y S T; X Y T Sn X Y copula

16、 (10 copula uv. copula (A3, Franks copula 13 S T Sn X Y 13 copula ( = 0.1 ,Sn 1 Bouy E, Surrleman V, Nikeghmali A, Riboulet G and RoncalliO T. Copulas for nance: A reading e guide and some applications. Paris: Groupe de Recherche Operationnelle, Credit Lyonnais, 2000. 2 Denuit M, Purcaru O and Van K

17、eilegom I. Bivariate Archimedean copulamodelling for censored data in non-life insurance. Journal of Actuarial Practice, 2006 (13: 532. 3 Embrechts P, McNeil A and Straumann D. Correlation and Dependence Risk Management: Properties and Pitfalls. Risk Management: Value at Risk and Beyond, ed. M. A. H

18、. Dempster, Cambridge University Press, 2002, 176223. 4 Frees E W and Valdezk E A. Understanding relationships using copulas. North American Actuarial Journal, 1998, (2: 125. 5 Joe H. Multivariate and dependence concepts. Chapman & Hall, London, 1997. 6 Nelsen R B. An Introduction to Copulas. Spring

19、er, New York, 1999. 7 11981. 8 2004. 9 Wang W, & Wells M T. Models selection and semiparametric inference for bivariate failure-time data. Journal of The American Statistical Association, 2000, 95: 6272. 10 Genest C, Quessy J-F and Rmillard B. Goodness-of-t procedures for copula models based on the

20、e probability integral transformation. Scandinavian Journal of Statistics, 2006, 33: 337366. 11 Rosenblatt M. Remarks on a multivariate transformation. Annals of Mathematical Statistics, 1952, 23: 470472. 12 Breyman W, Dias A and Embrechts P. Dependence structures for multivariate high-frequency dat

21、a in nance. Quantitative Finance, 2003, (3: 116. 13 Fermanian J D. Goodness-of-t tests for copulas. Journal of Multivariate Analysis, 2005, 95: 119152. 14 Chen X, Fan Y and Patton A. Simple tests for models of dependence between multiple nancial time series, with applications to US equity returns an

22、d exchange rates. London Economics Financial 1 copula 101 15 16 17 18 19 20 21 22 23 24 25 Markets Group, Working paper, No. 483. Available at SSRN: 2004. Chen X, Fan Y. Pseudo-likelihood ratio tests for semiparametric multivariate copula model selection. The Canadian Journal of Statistics, 2005, 33

23、: 389414. Van der Varrt, A. & Wellner J A. Weak Convergence and Empirical Processes. Springer, New York, 1996. Fermanian J D. Radulovic D and Wegkamp M J. Weak convergence of empirical copula processes. Bernoulli, 2004, 10: 847860. Deheuvels P. La fonction de dpendance empirique et ses proprits: Un

24、test non paramtrique e ee e dindpendence. Bulletin de lAcadmie royale de Belgique, Class des dcience, 1979, 65: 274292. e e Genest C, Ghoudi K and Rivest L P. A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 1995, 82: 543552. Polla

25、rd D. Convergence of Stochastic Process. Springer, New York, 1984. Zhu L X, and Neuhaus G. Nonparametric Monte Carlo tests for multivariate distributions. Biometrika, 2001, 87: 919928. Zhu L X. Model checking of dimension-reduction type for regression. Statistica Sinica, 2003, 13: 283296. Zhu L X. N

26、onparametric Monte Carlo Cests and Applications. Springer, New York, 2005. Zhu L X, Fujikoshi Y and Naito K. Heteroscedasticity checks for regression models. Science in China, 2001, 10: 12361252. Fermanian J D and Scaillet, O. Nonparametric estimation of copulas for time series. Journal of Risk, 2003, (5: 25-54. CHECKING THE ADEQUACY OF COPULAS WITH PARAMETRIC STRUCTURE Wu Ping Yu Zhou Zhu Liping (Department of Statistics, East China Normal Universi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论