版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第二十六章 二次函数26.1 二次函数yax2及其图象知识要点1、解析式形如(其中、是常数,且)的函数叫做二次函数。二次函数的定义域为一切实数。2、函数表达式中涉及函数解析式和定义域。在具体问题中,有时只研究函数解析式。需要研究函数定义域时,如果未加说明,那么函数定义域由解析式确定;否则,必须指明函数的定义域。3、二次函数的图形是一条曲线,这类曲线称为抛物线。4、抛物线(其中是常数,且)对称轴是轴,即直线;顶点是原点。抛物线的开口方向由所取值的符号决定,当时,它的开口向上,顶点是抛物线的最低点;当时,它的开口向下,顶点是抛物线的最高点。学习要求1熟练掌握二次函数的有关概念2熟练掌握二次函数ya
2、x2的性质和图象课堂学习检测一、填空题1形如_的函数叫做二次函数,其中_是自变量,a,b,c是_且_02函数yx2的图象叫做_,对称轴是_,顶点是_3抛物线yax2的顶点是_,对称轴是_当a0时,抛物线的开口向_;当a0时,抛物线的开口向_4当a0时,在抛物线yax2的对称轴的左侧,y随x的增大而_,而在对称轴的右侧,y随x的增大而_;函数y当x_时的值最_5当a0时,在抛物线yax2的对称轴的左侧,y随x的增大而_,而在对称轴的右侧,y随x的增大而_;函数y当x_时的值最_6写出下列二次函数的a,b,c(1)a_,b_,c_(2)ypx2a_,b_,c_(3)a_,b_,c_(4)a_,b_
3、,c_7抛物线yax2,a越大则抛物线的开口就_,a越小则抛物线的开口就_8二次函数yax2的图象大致如下,请将图中抛物线字母的序号填入括号内(1)y2x2如图( );(2)如图( );(3)yx2如图( );(4)如图( );(5)如图( );(6)如图( )9已知函数不画图象,回答下列各题(1)开口方向_;(2)对称轴_;(3)顶点坐标_;(4)当x0时,y随x的增大而_;(5)当x_时,y0;(6)当x_时,函数y的最_值是_10画出y2x2的图象,并回答出抛物线的顶点坐标、对称轴、增减性和最值综合、运用、诊断一、填空题11在下列函数中y2x2;y2x1;yx;yx2,回答:(1)_的图
4、象是直线,_的图象是抛物线(2)函数_y随着x的增大而增大函数_y随着x的增大而减小(3)函数_的图象关于y轴对称函数_的图象关于原点对称(4)函数_有最大值为_函数_有最小值为_12已知函数yax2bxc(a,b,c是常数)(1)若它是二次函数,则系数应满足条件_(2)若它是一次函数,则系数应满足条件_(3)若它是正比例函数,则系数应满足条件_13已知函数y(m23m)的图象是抛物线,则函数的解析式为_,抛物线的顶点坐标为_,对称轴方程为_,开口_14已知函数ym(m2)x(1)若它是二次函数,则m_,函数的解析式是_,其图象是一条_,位于第_象限(2)若它是一次函数,则m_,函数的解析式是
5、_,其图象是一条_,位于第_象限15已知函数ym,则当m_时它的图象是抛物线;当m_时,抛物线的开口向上;当m_时抛物线的开口向下二、选择题16下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( )Ayx(x1)Bxy1Cy2x22(x1)2D17在二次函数y3x2;中,图象在同一水平线上的开口大小顺序用题号表示应该为( )ABCD18对于抛物线yax2,下列说法中正确的是( )Aa越大,抛物线开口越大Ba越小,抛物线开口越大C越大,抛物线开口越大D越小,抛物线开口越大19下列说法中错误的是( )A在函数yx2中,当x0时y有最大值0B在函数y2x2中,当x0时y随
6、x的增大而增大C抛物线y2x2,yx2,中,抛物线y2x2的开口最小,抛物线yx2的开口最大D不论a是正数还是负数,抛物线yax2的顶点都是坐标原点三、解答题20函数y(m3)为二次函数(1)若其图象开口向上,求函数关系式;(2)若当x0时,y随x的增大而减小,求函数的关系式,并画出函数的图象拓展、探究、思考21抛物线yax2与直线y2x3交于点A(1,b)(1)求a,b的值;(2)求抛物线yax2与直线y2的两个交点B,C的坐标(B点在C点右侧);(3)求OBC的面积22已知抛物线yax2经过点A(2,1)(1)求这个函数的解析式;(2)写出抛物线上点A关于y轴的对称点B的坐标;(3)求OA
7、B的面积;(4)抛物线上是否存在点C,使ABC的面积等于OAB面积的一半,若存在,求出C点的坐标;若不存在,请说明理由26.2 二次函数ya(xh)2k及其图象知识要点1、一般地,二次函数的图像是抛物线,称为抛物线,它可以通过抛物线向上(时),或向下(时)平移个单位得到。2、抛物线(其中、四常数,且)的对称轴是轴,即直线,顶点坐标是,抛物线的开口方向由所取值的符号决定,当时,它的开口向上,顶点是抛物线的最低点,当时,它的开口向下,顶点是抛物线的最高点。3、一般地,抛物线(其中、是常数,且)可以通过将抛物线向左(时)或向右(时)平移个单位得到。4、抛物线(其中、是常数,且)的对称轴是经点且平行(
8、或重合)于轴的直线,即直线;顶点坐标是。当时,抛物线开口向上,顶点是抛物线的最低点;当时,抛物线开口向下,顶点是抛物线的最高点。5、抛物线可以通过将抛物线先向左(时)或向右(时)平移个单位,再向上(时)或向下(时)平移个单位得到。6、抛物线(其中、是常数,且)的对称轴是过点且平行(或重合)于轴的直线,即直线,顶点坐标是,当时,抛物线开口向上,顶点是抛物线的最低点,当时,抛物线开口向下,顶点是抛物线的最高点。学习要求掌握并灵活应用二次函数yax2k,ya(xh)2,ya(xh)2k的性质及图象课堂学习检测一、填空题1已知a0,(1)抛物线yax2的顶点坐标为_,对称轴为_(2)抛物线yax2c的
9、顶点坐标为_,对称轴为_(3)抛物线ya(xm)2的顶点坐标为_,对称轴为_2若函数是二次函数,则m_3抛物线y2x2的顶点,坐标为_,对称轴是_当x_时,y随x增大而减小;当x_时,y随x增大而增大;当x_时,y有最_值是_4抛物线y2x2的开口方向是_,它的形状与y2x2的形状_,它的顶点坐标是_,对称轴是_5抛物线y2x23的顶点坐标为_,对称轴为_当x_时,y随x的增大而减小;当x_时,y有最_值是_,它可以由抛物线y2x2向_平移_个单位得到6抛物线y3(x2)2的开口方向是_,顶点坐标为_,对称轴是_当x_时,y随x的增大而增大;当x_时,y有最_值是_,它可以由抛物线y3x2向_
10、平移_个单位得到二、选择题7要得到抛物线,可将抛物线( )A向上平移4个单位B向下平移4个单位C向右平移4个单位D向左平移4个单位8下列各组抛物线中能够互相平移而彼此得到对方的是( )Ay2x2与y3x2B与Cy2x2与yx22Dyx2与yx229顶点为(5,0),且开口方向、形状与函数的图象相同的抛物线是( )ABCD三、解答题10在同一坐标系中画出函数和的图象,并说明y1,y2的图象与函数的图象的关系11在同一坐标系中,画出函数y12x2,y22(x2)2与y32(x2)2的图象,并说明y2,y3的图象与y12x2的图象的关系综合、运用、诊断一、填空题12二次函数ya(xh)2k(a0)的
11、顶点坐标是_,对称轴是_,当x_时,y有最值_;当a0时,若x_时,y随x增大而减小13填表解析式开口方向顶点坐标对称轴y(x2)23y(x3)22y3(x2)2y3x2214抛物线有最_点,其坐标是_当x_时,y的最_值是_;当x_时,y随x增大而增大15将抛物线向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为_二、选择题16一抛物线和抛物线y2x2的形状、开口方向完全相同,顶点坐标是(1,3),则该抛物线的解析式为( )Ay2(x1)23By2(x1)23Cy(2x1)23Dy(2x1)2317要得到y2(x2)23的图象,需将抛物线y2x2作如下平移( )A向右平移2个单位,
12、再向上平移3个单位B向右平移2个单位,再向下平移3个单位C向左平移2个单位,再向上平移3个单位D向左平移2个单位,再向下平移3个单位三、解答题18将下列函数配成ya(xh)2k的形式,并求顶点坐标、对称轴及最值(1)yx26x10(2)y2x25x7(3)y3x22x(4)y3x26x2(5)y1005x2(6)y(x2)(2x1)拓展、探究、思考19把二次函数ya(xh)2k的图象先向左平移2个单位,再向上平移4个单位,得到二次函数的图象(1)试确定a,h,k的值;(2)指出二次函数ya(xh)2k的开口方向、对称轴和顶点坐标26.3 二次函数yax2bxc及其图象知识要点1、任意一个二次函
13、数(其中、是常数,且),都可以运用配方法,把它的解析式化为的形式。2、通常先把二次函数的解析式化为的形式,再讨论它的图像特征及平移方法。学习要求掌握并灵活应用二次函数yax2bxc的性质及其图象课堂学习检测一、填空题1把二次函数yax2bxc(a0)配方成ya(xh)2k形式为_,顶点坐标是_,对称轴是直线_当x_时,y最值_;当a0时,x_时,y随x增大而减小;x_时,y随x增大而增大2抛物线y2x23x5的顶点坐标为_当x_时,y有最_值是_,与x轴的交点是_,与y轴的交点是_,当x_时,y随x增大而减小,当x_时,y随x增大而增大3抛物线y32xx2的顶点坐标是_,它与x轴的交点坐标是_
14、,与y轴的交点坐标是_4把二次函数yx24x5配方成ya(xh)2k的形式,得_,这个函数的图象有最_点,这个点的坐标为_5已知二次函数yx24x3,当x_时,函数y有最值_,当x_时,函数y随x的增大而增大,当x_时,y06抛物线yax2bxc与y32x2的形状完全相同,只是位置不同,则a_7抛物线y2x2先向_平移_个单位就得到抛物线y2(x3)2,再向_平移_个单位就得到抛物线y2(x3)24二、选择题8下列函数中y3x1;y4x23x;y52x2,是二次函数( )ABCD9抛物线y3x24的开口方向和顶点坐标分别是( )A向下,(0,4)B向下,(0,4)C向上,(0,4)D向上,(0
15、,4)10抛物线的顶点坐标是( )ABCD(1,0)11二次函数yax2x1的图象必过点( )A(0,a)B(1,a)C(1,a)D(0,a)三、解答题12已知二次函数y2x24x6(1)将其化成ya(xh)2k的形式;(2)写出开口方向,对称轴方程,顶点坐标;(3)求图象与两坐标轴的交点坐标;(4)画出函数图象;(5)说明其图象与抛物线y2x2的关系;(6)当x取何值时,y随x增大而减小;(7)当x取何值时,y0,y0,y0;(8)当x取何值时,函数y有最值?其最值是多少?(9)当y取何值时,4x0;(10)求函数图象与两坐标轴交点所围成的三角形面积综合、运用、诊断一、填空题13已知抛物线y
16、ax2bxc(a0)(1)若抛物线的顶点是原点,则_;(2)若抛物线经过原点,则_;(3)若抛物线的顶点在y轴上,则_;(4)若抛物线的顶点在x轴上,则_14抛物线yax2bx必过_点15若二次函数ymx23x2mm2的图象经过原点,则m_,这个函数的解析式是_16若抛物线yx24xc的顶点在x轴上,则c的值是_17若二次函数yax24xa的最大值是3,则a_18函数yx24x3的图象的顶点及它和x轴的两个交点为顶点所构成的三角形面积为_平方单位19抛物线yax2bx(a0,b0)的图象经过第_象限二、选择题20函数yx2mx2(m0)的图象是( )21抛物线yax2bxc(a0)的图象如下图
17、所示,那么( )Aa0,b0,c0Ba0,b0,c0Ca0,b0,c0Da0,b0,c022已知二次函数yax2bxc的图象如右图所示,则( )Aa0,c0,b24ac0Ba0,c0,b24ac0Ca0,c0,b24ac0Da0,c0,b24ac023已知二次函数yax2bxc的图象如下图所示,则( )Ab0,c0,0Bb0,c0,0Cb0,c0,0Db0,c0,0 第23题图 第24题图24二次函数ymx22mx(3m)的图象如图所示,那么m的取值范围是( )Am0Bm3Cm0D0m325在同一坐标系内,函数ykx2和ykx2(k0)的图象大致如图( )26函数(ab0)的图象在下列四个示意
18、图中,可能正确的( )三、解答题27已知抛物线yx23kx2k4(1)k为何值时,抛物线关于y轴对称;(2)k为何值时,抛物线经过原点28画出的图象,并求:(1)顶点坐标与对称轴方程;(2)x取何值时,y随x增大而减小?x取何值时,y随x增大而增大?(3)当x为何值时,函数有最大值或最小值,其值是多少?(4)x取何值时,y0,y0,y0?(5)当y取何值时,2x2?拓展、探究、思考29已知函数y1ax2bxc(a0)和y2mxn的图象交于(2,5)点和(1,4)点,并且y1ax2bxc的图象与y轴交于点(0,3)(1)求函数y1和y2的解析式,并画出函数示意图;(2)x为何值时,y1y2;y1
19、y2;y1y230如图是二次函数yax2bxc的图象的一部分;图象过点A(3,0),对称轴为x1,给出四个结论:b24ac;2ab0;abc0;5ab其中正确的是_(填序号)26.4 二次函数yax2bxc解析式的确定知识要点1、抛物线(其中、是常数,且)的对称轴是直线,顶点坐标是。当时,抛物线的开口向上,顶点是抛物线的最低点;当时,抛物线的开口向下,顶点是抛物线的最高点。2、当时,抛物线在对称轴左侧部分是下降的,在对称轴右侧部分是上升的。当时,抛物线在对称轴左侧部分是上升的,在对称轴右侧部分是下降的。学习要求能根据条件运用适当的方法确定二次函数解析式一、填空题1二次函数解析式通常有三种形式:
20、一般式_;顶点式_;双根式_(b24ac0)2若二次函数yx22xa21的图象经过点(1,0),则a的值为_3已知抛物线的对称轴为直线x2,与x轴的一个交点为则它与x轴的另一个交点为_二、解答题4二次函数yax2bxc(a0)的图象如图所示,求:(1)对称轴方程_;(2)函数解析式_;(3)当x_时,y随x增大而减小;(4)由图象回答:当y0时,x的取值范围_;当y0时,x_;当y0时,x的取值范围_5抛物线yax2bxc过(0,4),(1,3),(1,4)三点,求抛物线的解析式6抛物线yax2bxc过(3,0),(1,0)两点,与y轴的交点为(0,4),求抛物线的解析式7抛物线yax2bxc的顶点为(2,4),且过(1,2)点,求抛物线的解析式8二次函数yx2bxc的图象过点A(2,5),且当x2时,y3,求这个二次函数的解析式,并判断点B(0,3)是否在这个函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 会计事务所实习日记
- 会计人员培训心得体会
- 幼儿教育的教学随笔汇编12篇
- 关于销售类生产实习报告4篇
- 乡镇雪亮工程公共视频应用联网项目综合视频监控系统功能介绍
- 法律的作用(醉驾版)
- 2025年运载火箭控制系统仿真实时处理系统项目发展计划
- 《职场沟通》电子教案 项目六 职场面试沟通
- 商铺出租合同模板
- 杭州市房屋租赁合同
- 水运工程重大事故隐患清单
- 仿写诗歌-乡愁
- 三年级《稻草人》阅读测试试题附答案
- 心理健康与职业生涯(第一章)课件
- 粤教版三年级劳动与技术全册教案教学设计
- 越努力越幸运商务红色工作汇报PPT模板
- (完整版)外科学名词解释【完整版】
- 永磁同步电机控制系统设计与仿真毕业论文
- 传感器与检测技术课后习题和答案(陈杰)
- 藏历新年ppt模版课件
- 基于PLC的自动门控制系统
评论
0/150
提交评论