版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、南京市、盐城市2018届高三年级第一次模拟考试数 学 试 题(总分160分,考试时间120分钟)注意事项:1本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷2本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分3答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上参考公式:柱体体积公式:,其中为底面积,为高.一、填空题(本大题共14小题,每小题5分,计70分. 不需写出解答过程,请把答案写在答题纸的指定位置上)1已知集合,则 2设复数为虚数单位),若为纯虚数,则的值为 3为调查某县小学六年级学生每天用于课外阅读的时间,现从该县小学六年级4000名学生中
2、随机抽取100名学生进行问卷调查,所得数据均在区间50,100上,其频率分布直方图如图所示,则估计该县小学六年级学生中每天用于阅读的时间在(单位:分钟)内的学生人数为 时间(单位:分钟)频率组距50 60 70 80 90 1000.035a0.0200.0100.005第3题图Read If Then Else End IfPrint 第4题图4执行如图所示的伪代码,若,则输出的的值为 5口袋中有形状和大小完全相同的4个球,球的编号分别为1,2,3,4,若从袋中一次随机摸出2个球,则摸出的2个球的编号之和大于4的概率为 6若抛物线的焦点与双曲线的右焦点重合,则实数的值为 7设函数的值域为,若
3、,则实数的取值范围是 8已知锐角满足,则的值为 9若函数在区间上单调递增,则实数的取值范围是 10设为等差数列的前项和,若的前2017项中的奇数项和为2018,则的值为 11设函数是偶函数,当x0时,=,若函数 有四个不同的零点,则实数m的取值范围是 AB第13题图12在平面直角坐标系中,若直线上存在一点,圆上存在一点,满足,则实数的最小值为 13如图是蜂巢结构图的一部分,正六边形的边长均为1,正六边形的顶点称为“晶格点”若四点均位于图中的“晶格点”处,且的位置所图所示,则的最大值为 14若不等式对任意都成立,则实数的最小值为 二、解答题(本大题共6小题,计90分. 解答应写出必要的文字说明,
4、证明过程或演算步骤,请把答案写在答题纸的指定区域内)15(本小题满分14分)ABCA1B1C1MN第15题图如图所示,在直三棱柱中,点分别是的中点.(1)求证:平面;(2)若,求证:.16(本小题满分14分)在中,角的对边分别为 已知.(1)若,求的值;(2)若,求的值17(本小题满分14分)有一矩形硬纸板材料(厚度忽略不计),一边长为6分米,另一边足够长现从中截取矩形(如图甲所示),再剪去图中阴影部分,用剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计),其中是以为圆心、的扇形,且弧,分别与边,相切于点, (1)当长为1分米时,求折卷成的包装盒的容积;ADCBE
5、GFOMNH第17题-图甲NEFGH第17题-图乙MN (2)当的长是多少分米时,折卷成的包装盒的容积最大?18. (本小题满分16分)如图,在平面直角坐标系中,椭圆的下顶点为,点是椭圆上异于点的动点,直线分别与轴交于点,且点是线段的中点当点运动到点处时,点的坐标为(1)求椭圆的标准方程;xyOBNMPQD第18题图(2)设直线交轴于点,当点均在轴右侧,且时,求直线的方程19(本小题满分16分)设数列满足,其中,且,为常数.(1)若是等差数列,且公差,求的值;(2)若,且存在,使得对任意的都成立,求的最小值;(3)若,且数列不是常数列,如果存在正整数,使得对任意的均成立. 求所有满足条件的数列
6、中的最小值.20(本小题满分16分)设函数,().(1)当时,若函数与的图象在处有相同的切线,求的值;(2)当时,若对任意和任意,总存在不相等的正实数,使得,求的最小值;(3)当时,设函数与的图象交于两点求证:.南京市、盐城市2018届高三年级第一次模拟考试数学参考答案一、填空题:本大题共14小题,每小题5分,计70分.1 21 31200 41 5 66 78 9 104034 11 12 1324 14100二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15证明:(1)因为是直三棱柱,所以,且,又点分别是的中点,所以,且
7、所以四边形是平行四边形,从而 4分又平面,平面,所以面 6分(2)因为是直三棱柱,所以底面,而侧面,所以侧面底面又,且是的中点,所以则由侧面底面,侧面底面,且底面,得侧面 8分又侧面,所以 10分又,平面,且,所以平面 12分又平面,所以 14分16解:(1)因为,则由正弦定理,得 2分又,所以,即 4分又是的内角,所以,故 6分(2)因为, 所以,则由余弦定理,得,得 10分从而, 12分又,所以从而 14分17解:(1)在图甲中,连接交于点设,在中,因为,所以,则从而,即. 2分ADCBEGFOMNHT故所得柱体的底面积. 4分又所得柱体的高,所以.答:当长为1分米时,折卷成的包装盒的容积
8、为立方分米. 6分(2)设,则,所以所得柱体的底面积. 又所得柱体的高,所以,其中. 10分令,则由,解得. 12分列表如下:0增极大值减所以当时,取得最大值.答:当的长为2分米时,折卷成的包装盒的容积最大. 14分18解:(1)由,得直线的方程为 2分令,得点的坐标为所以椭圆的方程为 4分将点的坐标代入,得,解得所以椭圆的标准方程为 8分(2)方法一:设直线的斜率为,则直线的方程为在中,令,得,而点是线段的中点,所以所以直线的斜率 10分联立,消去,得,解得用代,得 12分又,所以,得 14分故,又,解得所以直线的方程为 16分方法二:设点的坐标分别为由,得直线的方程为,令,得同理,得而点是
9、线段的中点,所以,故 10分又,所以,得,从而,解得 12分将代入到椭圆C的方程中,得又,所以,即,解得(舍)或又,所以点的坐标为14分故直线的方程为 16分19解:(1)由题意,可得,化简得,又,所以. 4分(2)将代入条件,可得,解得,所以,所以数列是首项为1,公比的等比数列,所以. 6分欲存在,使得,即对任意都成立,则,所以对任意都成立. 8分令,则,所以当时,;当时,;当时,所以的最大值为,所以的最小值为. 10分(3)因为数列不是常数列,所以若,则恒成立,从而,所以,所以,又,所以,可得是常数列矛盾所以不合题意. 12分若,取(*),满足恒成立 14分由,得则条件式变为由,知;由,知
10、;由,知所以,数列(*)适合题意所以的最小值为. 16分20解:(1)由,得,又,所以,.当时,所以,所以. 2分因为函数与的图象在处有相同的切线,所以,即,解得. 4分(2)当时,则,又,设,则题意可转化为方程在上有相异两实根 6分即关于的方程在上有相异两实根所以,得,所以对恒成立 8分因为,所以(当且仅当时取等号),又,所以的取值范围是,所以故的最小值为. 10分(3)当时,因为函数与的图象交于两点,所以,两式相减,得. 12分要证明,即证,即证,即证. 14分令,则,此时即证令,所以,所以当时,函数单调递增又,所以,即成立;再令,所以,所以当时,函数单调递减,又,所以,即也成立综上所述,
11、 实数满足. 16分附加题答案ABEDFO·第21(A)图21(A)解:如图,连接,因为直线与相切于点,所以,又因为垂直于,所以,所以,在中,所以, 5分由得,即,又,所以,所以,又,所以,即到直径的距离为4. 10分(B)解:设是圆上任意一点,则,设点在矩阵对应的变换下所得的点为,则,即,解得, 5分代入,得,即为所求的曲线方程. 10分(C)解:以极点O为原点,极轴为轴建立平面直角坐标系,由,得,得直线的直角坐标方程为 5分曲线,即圆,所以圆心到直线的距离为因为直线与曲线()相切,所以,即. 10分(D)解:由柯西不等式,得,即而,所以,所以, 5分由,得,所以当且仅当时,所以当
12、取最大值时的值为. 10分22解:(1)因为是菱形,所以又底面,以为原点,直线 分别为轴,轴,轴,建立如图所示空间直角坐标系则,MABCDOP第22题图xyz所以,则故直线与所成角的余弦值为. 5分(2),设平面的一个法向量为,则,得,令,得,得平面的一个法向量为又平面的一个法向量为,所以,则.故平面与平面所成锐二面角的余弦值为. 10分23解:(1)由条件, ,在中令,得 1分在中令,得,得 2分在中令,得,得 3分(2)猜想=(或=) 5分欲证猜想成立,只要证等式成立方法一:当时,等式显然成立,当时,因为,故故只需证明即证而,故即证 由等式可得,左边的系数为而右边,所以的系数为由恒成立可得成立.综上,成立. 10分方法二:构造一个组合模型,一个袋中装有个小球,其中n个是编号为1,2,n的白球,其余n
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年音乐学校钢琴教师合同
- 2024年财产共有转为个人协议
- 2024年轿车买卖标准协议模板一
- 2024苗木采购合同范本
- 2025年度编剧与导演联合创作合同终止及后续作品开发协议3篇
- 2024年网络安全防护与技术支持合同
- 2024年高精度导航定位技术研发合同
- 2024年跨国服务提供协议
- 2024版旅行社转让合同
- 2024年租赁物业保险协议3篇
- 房屋租赁合同样本样本
- 法务公司合同范本
- GB/T 44591-2024农业社会化服务社区生鲜店服务规范
- 招标基础知识题库单选题100道及答案解析
- 湘美版七年级上册美术 2.卡通故事 教案( )
- 宁波文旅会展集团有限公司招聘笔试题库2024
- 高速公路收费站员工年度考评办法
- 【课件】跨学科实践:探索厨房中的物态变化问题-人教版八年级上册物理
- 房地产企业岗位招聘笔试题题库之四(含答案)营销副总经理
- 名著导读《儒林外史》阅读周计划 统编版语文九年级下册
- 某集团下属子公司年度经营绩效管理办法全套
评论
0/150
提交评论