版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1第6章 具有耦合电感元件的电路分析l重点重点 1. 1.互感和互感电压互感和互感电压 2. 2.互感电路的计算互感电路的计算 3. 3.空心变压器和理想变压器空心变压器和理想变压器26.1 6.1 交流电路中的磁耦合1. 1. 磁耦合线圈磁耦合线圈 耦合电感元件属于多端元件,在实际电路中,如收耦合电感元件属于多端元件,在实际电路中,如收音机、电视机中的中周线圈、振荡线圈,整流电源里使用的音机、电视机中的中周线圈、振荡线圈,整流电源里使用的变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌变压器等都是耦合电感元件,熟悉这类多端元件的特性,掌握包含这类多端元件的电路问题的分析方法是非常必要的。
2、握包含这类多端元件的电路问题的分析方法是非常必要的。线圈线圈1 1通入电流通入电流i1时,在线圈时,在线圈1 1中产生磁通中产生磁通(magnetic flux),同时,有部分磁通穿过临近线圈,同时,有部分磁通穿过临近线圈2,这部分磁通称为,这部分磁通称为互感磁通。两线圈间有磁的耦合。互感磁通。两线圈间有磁的耦合。+u11+u21i1 11 21N1N23定义定义 :磁链磁链 (magnetic linkage), =N 当线圈周围无铁磁物质当线圈周围无铁磁物质( (空心线圈空心线圈) )时时, 与与i 成正比成正比, ,当只有当只有一个线圈时:一个线圈时: 。为为自自感感系系数数,单单位位亨
3、亨称称H)( 111111LiL 当两个线圈都有电流时,每一线圈的磁链为自磁链与当两个线圈都有电流时,每一线圈的磁链为自磁链与互磁链的代数和:互磁链的代数和: 2121112111 iMiL 1212221222 iMiL 。为互感系数,单位亨为互感系数,单位亨、称称H)( 2112MM注注(1 1)M值与线圈的形状、几何位置、空间媒质有关,与值与线圈的形状、几何位置、空间媒质有关,与线圈中的电流无关,满足线圈中的电流无关,满足M12=M21(2 2)L L总为正值,总为正值,M值有正有负值有正有负. .42. 2. 耦合系数耦合系数 (coupling coefficient) 用耦合系数用
4、耦合系数k 表示两个线表示两个线圈磁耦合的紧密程度。圈磁耦合的紧密程度。121def LLMk当当 k=1 称全耦合称全耦合: 漏磁漏磁 s1 = s2=0即即 11= 21 , 22 = 121)(2211211222112121221 iLiLMiMiLLMLLMk一般有:一般有:耦合系数耦合系数k与线圈的结构、相互几何位置、空间磁介质有关与线圈的结构、相互几何位置、空间磁介质有关5互感现象互感现象利用利用变压器:信号、功率传递变压器:信号、功率传递避免避免干扰干扰克服:合理布置线圈相互位置或增加屏蔽减少互感作用。克服:合理布置线圈相互位置或增加屏蔽减少互感作用。6当当i i1 1为时变电
5、流时,磁通也将随时间变化,从而在线为时变电流时,磁通也将随时间变化,从而在线圈两端产生感应电压。圈两端产生感应电压。 dddd111111tiLtu 当当i1、u11、u21方向与方向与 符合右手螺旋时,根据电磁感符合右手螺旋时,根据电磁感应定律和楞次定律:应定律和楞次定律: 当两个线圈同时通以电流时,每个线圈两端的电压当两个线圈同时通以电流时,每个线圈两端的电压均包含自感电压和互感电压:均包含自感电压和互感电压:tiMtudd dd 12121 自感电压自感电压互感电压互感电压3. 3. 耦合线圈的电压方程耦合线圈的电压方程7在正弦交流电路中,其相量形式的方程为在正弦交流电路中,其相量形式的
6、方程为22122111 jjjjILIMUIMILUtiLtiMuuutiMtiLuuudd dd dd dd2212221221112111 2121112111 iMiL 1212221222 iMiL 8 两线圈的自感磁链和互感磁链相助,互感电压取正,两线圈的自感磁链和互感磁链相助,互感电压取正,否则取负。表明互感电压的正、负:否则取负。表明互感电压的正、负:(1 1)与电流的参考方向有关。)与电流的参考方向有关。(2 2)与线圈的相对位置和绕向有关。)与线圈的相对位置和绕向有关。注注94.4.互感线圈的同名端互感线圈的同名端对自感电压,当对自感电压,当u, i 取关联参考方向,取关联参
7、考方向,u、i与与 符合符合右螺旋定则,其表达式为右螺旋定则,其表达式为 dddd dd 111111111tiLtNtu 上式上式 说明,对于自感电压由于电压电流为同一线圈说明,对于自感电压由于电压电流为同一线圈上的,只要参考方向确定了,其数学描述便可容易地写上的,只要参考方向确定了,其数学描述便可容易地写出,可不用考虑线圈绕向。出,可不用考虑线圈绕向。i1u11对互感电压,因产生该电压的的电流在另一线圈上,对互感电压,因产生该电压的的电流在另一线圈上,因此,要确定其符号,就必须知道两个线圈的绕向。这在因此,要确定其符号,就必须知道两个线圈的绕向。这在电路分析中显得很不方便。电路分析中显得很
8、不方便。为解决这个问题引入同名端的为解决这个问题引入同名端的概念。概念。10tiMutiMudd dd1313112121 当两个电流分别从两个线圈的对应端子同时当两个电流分别从两个线圈的对应端子同时流入或流出,若所产生的磁通相互加强时,则这流入或流出,若所产生的磁通相互加强时,则这两个对应端子称为两互感线圈的同名端。两个对应端子称为两互感线圈的同名端。 * 同名端同名端i1i2i3注意:线圈的同名端必须两两确定。注意:线圈的同名端必须两两确定。+u11+u21 11 0N1N2+u31N3 s11确定同名端的方法:确定同名端的方法:(1) (1) 当两个线圈中电流同时由同名端流入当两个线圈中
9、电流同时由同名端流入( (或流出或流出) )时,两时,两个电流产生的磁场相互增强。个电流产生的磁场相互增强。 i1122*112233* 例例(2) (2) 当随时间增大的时变电流从一线圈的一端流入时,将当随时间增大的时变电流从一线圈的一端流入时,将会引起另一线圈相应同名端的电位升高。会引起另一线圈相应同名端的电位升高。12 同名端的实验测定:同名端的实验测定:i1122*R SV+电压表正偏。电压表正偏。0 , 0 22 dtdiMudtdi如图电路,当闭合开关如图电路,当闭合开关S时,时,i增加,增加, 当两组线圈装在黑盒里,只引出四个端线组,要当两组线圈装在黑盒里,只引出四个端线组,要确
10、定其同名端,就可以利用上面的结论来加以判断。确定其同名端,就可以利用上面的结论来加以判断。当断开当断开S时,如何判定?时,如何判定?13由同名端及由同名端及u、i参考方向确定互感线圈的特性方程参考方向确定互感线圈的特性方程 有了同名端,以后表示两个线圈相互作用,就不再有了同名端,以后表示两个线圈相互作用,就不再考虑实际绕向,而只画出同名端及参考方向即可。考虑实际绕向,而只画出同名端及参考方向即可。tiMudd121 tiMudd121 i1*u21+Mi1*u21+M14tiMtiLudddd2111 tiLtiMudddd2212 i1*L1L2+_u1+_u2i2MtiMtiLudddd2
11、111 tiLtiMudddd2212 i1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2Mi1*L1L2+_u1+_u2i2M例例写写出出图图示示电电路路电电压、压、电电流流关关系系式式15例例i1*L1L2+_u2MR1R2+_u21010i1/At/s)()(H,1,H2,H5,10 2211tutuMLLR和和求求已已知知 tstVstVtiMtu2 021 1010 10dd)(12解解 tstVtstVttiLiRtu2 021 150 10010 50 100dd)(111 tsttstti2 021102010101166.2 6.2 具有耦合电感元件电路的
12、计算具有耦合电感元件电路的计算1. 1. 耦合线圈的串联耦合线圈的串联(1 1) 顺接串联顺接串联tiLRitiMLLiRRiRtiMtiLtiMtiLiRudd dd)2()( dddddddd21212211 MLLLRRR2 2121iRLu+iM*u2+R1R2L1L2u1+u+去耦等效电路去耦等效电路17(2 2) 反接串联反接串联MLLLRRR2 2121 tiLRitiMLLiRRiRtiMtiLtiMtiLiRudddd)2()( dddddddd21212211 )(2121LLM 互感不大于两个自感的算术平均值。互感不大于两个自感的算术平均值。02 21 MLLLiM*u2
13、+R1R2L1L2u1+u+iRLu+18 顺接一次,反接一次,就可以测出互感:顺接一次,反接一次,就可以测出互感:4反反顺顺LLM 全耦合时全耦合时 21LLM 221212121)(22LLLLLLMLLL 当当 L1=L2 时时 , M= L1=L2 4M 顺接顺接0 反接反接L=互感的测量方法:互感的测量方法:19在正弦激励下:在正弦激励下:*1 U+R1R2j L1+j L22 Uj M U I )(j)(2121IMLLIRRU+20*1 U+R1R2j L1+j L22 Uj M U I I 1IR 1jIL jIM 2IR 2jIL jIM1 U2 U U I 1IR 1jIL
14、 jIM 2IR 2jIL jIM1 U2 U U相量图:相量图:(a) (a) 顺接顺接(b) (b) 反接反接21(1) 同侧并联同侧并联tiMtiLudddd211 tiMLLMLLudd2)(21221 i = i1 +i2 解得解得u, i 的关系:的关系:2. 2. 耦合线圈的并联耦合线圈的并联*Mi2i1L1L2ui+tiMtiLudddd122 22如全耦合:如全耦合:L1L2=M2当当 L1 L2 ,Leq=0 ( (物理意义不明确物理意义不明确) )L1=L2 =L , Leq=L (相当于导线加粗,电感不变相当于导线加粗,电感不变) ) 等效电感:等效电感:0 2)(21
15、221 MLLMLLLeqLequi+去耦等效电路去耦等效电路23(2) 异侧并联异侧并联*Mi2i1L1L2ui+tiMtiLudddd211 i = i1 +i2 tiMtiLudddd122 tiMLLMLLudd2)(21221 解得解得u, i 的关系:的关系:等效电感:等效电感:0 2)(21221 MLLMLLLeq243.3.耦合电感的耦合电感的T T型等效型等效(1 1) 同名端为共端的同名端为共端的T T型去耦等效型去耦等效*j L1 I1 I2 I123j L2j M21113 jj IMILU12223 jj IMILU 21 III j)(j11IMIML j)(j2
16、2IMIML j (L1-M) I1 I2 I123j Mj (L2-M)25(2 2) 异名端为共端的异名端为共端的T T型去耦等效型去耦等效*j L1 I1 I2 I123j L2j Mj (L1M) I1 I2 I123j Mj (L2M)21113 jj IMILU 12223 jj IMILU 21 III j)(j11IMIML j)(j22IMIML 26*Mi2i1L1L2ui+*Mi2i1L1L2u+u+j (L1M) I1 I2 Ij Mj (L2M)j (L1M)1 I2 Ij Mj (L2M)274. 4. 受控源等效电路受控源等效电路2111 IMjILjU 1222
17、 IMjILjU *Mi2i1L1L2u+u+j L11 I2 Ij L2+2 IMj 1 IMj +2 U+1 U285. 5. 有互感电路的计算有互感电路的计算 (1) (1) 在正弦稳态情况下,有互感的电路的计算仍应用前面在正弦稳态情况下,有互感的电路的计算仍应用前面 介绍的相量分析方法。介绍的相量分析方法。 (2) (2) 注意互感线圈上的电压除自感电压外,还应包含互感注意互感线圈上的电压除自感电压外,还应包含互感 电压。电压。 (3) (3) 一般采用支路法和回路法计算。一般采用支路法和回路法计算。29例例1 1求图示电路的开路电压。求图示电路的开路电压。1I)2(313111 ML
18、LjRUIS M12+_+_SUocU* M23M31L1L2L3R1)2()( 313113123123131311231120MLLjRUMMMLjILjIMjIMjIMjUSc 解解1 130作出去耦等效电路,作出去耦等效电路,( (一对一对消一对一对消):):M12* M23M13L1L2L3* M23M13L1M12L2M12L3+M12L1M12 +M23 M13 L2M12M23 +M13 L3+M12M23 M13 解解2 2L1M12 +M23L2M12 M23L3+M12 M23 M1331L1M12 +M23 M13 L2M12M23 +M13 L3+M12M23 M13
19、 R1 + +_SUocU1I)2(313111 MLLjRUIS )2()(3131131231230MLLjRUMMMLjUSc 32例例2 2要使要使i=0,问电源的角频率为多少?问电源的角频率为多少?ZRCL1L2MiuS+L1 L2C R + SUIMZ*L1M L2MC R + SUIZM解解CM 1 当当MC1 0 I336.3 6.3 空心变压器空心变压器*j L11 I2 Ij L2j M+S UR1R2Z=R+jX 变压器由两个具有互感的线圈构成,一个线圈变压器由两个具有互感的线圈构成,一个线圈接向电源,另一线圈接向负载,变压器是利用互感来实接向电源,另一线圈接向负载,变压
20、器是利用互感来实现从一个电路向另一个电路传输能量或信号的器件。当现从一个电路向另一个电路传输能量或信号的器件。当变压器线圈的芯子为非铁磁材料时,称空心变压器。变压器线圈的芯子为非铁磁材料时,称空心变压器。1. 1. 空心变压器电路空心变压器电路原边回路原边回路副边回路副边回路342. 2. 分析方法分析方法(1 1) 方程法分析方程法分析*j L11 I2 Ij L2j M+S UR1R2Z=R+jXS2111 j-) j( UIMILR 0)j(j2221 IZLRIM令令 Z11=R1+j L1, Z22=(R2+R)+j( L2+X)回路方程:回路方程:S2111 j- UIMIZ 0j
21、2221 IZIM 35 )(22211S1 ZMZUI 222111Sin)( ZMZIUZ 1122211S2222211S2)(1j)(j ZMZZUMZZMZUMI 1 I+S UZ11222)(ZM原边等效电路原边等效电路2 I+oc UZ22112)(ZM副边等效电路副边等效电路(2 2) 等效电路法分析等效电路法分析36XRXRXMXRRMXRMZMZjj j)(2222222222222222222222222222211Z11= R+j X2222222222XRRMR2222222222XRXMX11in2 , , 0ZZI 即副边开路即副边开路当当1 I+S UZ1122
22、2)(ZM副边对原边的反射阻抗。副边对原边的反射阻抗。反射电阻。恒为正反射电阻。恒为正 , , 表示副边回表示副边回路吸收的功率是靠原边供给的。路吸收的功率是靠原边供给的。反射电抗。反射电抗。负号反映了引入电负号反映了引入电抗与付边电抗的性质相反。抗与付边电抗的性质相反。原边等效电路原边等效电路37反射阻抗反映了副边回路对原边回路的影响。从物理意反射阻抗反映了副边回路对原边回路的影响。从物理意义讲,虽然原副边没有电的联系,但由于互感作用使闭合的义讲,虽然原副边没有电的联系,但由于互感作用使闭合的副边产生电流,反过来这个电流又影响原边电流电压。副边产生电流,反过来这个电流又影响原边电流电压。从能
23、量角度来说从能量角度来说 : :电源发出有功电源发出有功 P= I12(R1+R)I12R1 消耗在原边;消耗在原边;I12R 消耗在付边,由互感传输。消耗在付边,由互感传输。2221 j IZIM 证证明明22222222212)()(IXRIM 2222221222222222PIRIXRRM )( 38111IMjZUMU Soc j112)(ZM原边对副边的反射阻抗。原边对副边的反射阻抗。利用戴维南定理可以求得空心变压器副边的等效电路利用戴维南定理可以求得空心变压器副边的等效电路 。副边开路时,原边电流在副边产生副边开路时,原边电流在副边产生的互感电压。的互感电压。2 I+oc UZ2
24、2112)(ZM副边等效电路副边等效电路(3 3) 去耦等效法分析去耦等效法分析 对含互感的电路进行去耦等效,变为无互感的电对含互感的电路进行去耦等效,变为无互感的电路,再进行分析。路,再进行分析。39已知已知 US=20 V , 原边反射阻抗原边反射阻抗 Z11=10j10 .求求: ZX 并求负载获得的有功功率并求负载获得的有功功率.101010j4222211jZZMZX 8 . 9 j2 . 010200)1010(41010104 jjjjZX此时负载获得的功率:此时负载获得的功率: W101010202RPPR)(反 W104 , *2S1111RUPZZ实际是最佳匹配:实际是最佳
25、匹配:解:解:* *j10 2 Ij10 j2+S U10 ZX+S U10+j10 Zl=10j10 例例1解解40L1=3.6H , L2=0.06H , M=0.465H , R1=20 , R2=0.08 , RL=42 , 314 314rad/s,V 0115o sU。II21, :求应用原边等效电路应用原边等效电路.jj41130201111 LRZ .j851808422222jLRRZL 8188422)1 .24(3 .4621 .2411.46146o222211.-jZXZM1 I+S UZ11222)(ZM 例例2*j L11 I2 Ij L2j M+S UR1R2R
26、L141A)9 .64(111. 08 .1884224 .1130200115o11S1 jjZZUIl应用副边等效电路应用副边等效电路VjjLjRUMjIMjUSOC085.144 .1130200115146 111 85.18906 .1130213164 .113020146)(2112jjZM22 I+oc UZ22112)(ZMAjjUIOC0353. 008.42085.1485.1808.425 .182 42例例3全耦合互感电路如图,求电路初级端全耦合互感电路如图,求电路初级端ab间的等效阻抗。间的等效阻抗。* *L1aM+S UbL2解解1111 jLZ 222 jLZ
27、2222211)(LMjZMZ)1()1( 21212122111kLjLLMLjLMjLjZZZlab 解解2画出去耦等效电路画出去耦等效电路L1M L2M+ SUMab)1( )1( )( )/()(212121222122121kLLLMLLMLLLMLMMLMLMMLLab 43例例4L1=L2=0.1mH , M=0.02mH , R1=10 , C1=C2=0.01 F , 问问:R2=?能吸收最大功能吸收最大功率率, , 求最大功率。求最大功率。V 010o sU解解1 10)1 j(11111CLRZ 222222)1 j(RCLRZ 222211400)(RZMZ 10 10
28、6 6rad/s,* *j L1j L2j M+S UR1C2R2C1 100 21LL 1001121CC 20 M 应用原边等效电路应用原边等效电路+S U10 2400R当当2111140010RZZR2=40 时吸收最大功率时吸收最大功率WP5 . 2)104(102max 44解解2应用副边等效电路应用副边等效电路4010400)(11211ZMZ+oc UR240)(112 ZM VjjZUMjUSOC2010102011 当当 402RZl时吸收最大功率时吸收最大功率WP5 . 2)404(202max 例例5图示互感电路已处于稳态,图示互感电路已处于稳态,t=0时开关打开,时开
29、关打开,求求t 0+时开路电压时开路电压u2(t)。* *0.2H0.4HM=0.1H+10 40Vu2+10 5 10 45解解* *0.2H0.4HM=0.1H+10 40Vu2+10 5 10 副边开路,对原边回路无影响,开路电压副边开路,对原边回路无影响,开路电压u2(t)中只有中只有互感电压。先应用三要素法求电流互感电压。先应用三要素法求电流i(t).iAii1211510/1040)0()0( 10 0 ts01. 0202 . 0 t0)( iAeeiiititt100)()0()()( VeedtddtdiMtutt100100210)(1 . 0)( 46解解例例6*uS(t
30、)Z100 CL1L2MttuCMLS cos2100)(,201120 2 ,已已知知问问Z为何值时其上获得最大为何值时其上获得最大功率,求出最大功率。功率,求出最大功率。(1 1)判定互感线圈的)判定互感线圈的同名端。同名端。j L1 R + SUIMZL*j L2 1/j C 47(2 2)作去耦等效电路)作去耦等效电路j100 j20 j20 100 j( L-20) 00100 j100 100 j( L-20) 00100 j L1 R + SUIMZL*j L2 1/j C 48j100 100 j( L-20) 00100 uocj100 100 j( L-20) ZeqVjj
31、jUjUSoc045250100100100100100100100 5050100100jjZeq/ 5050*jZZeqWRUPeqoc25504)250(42max 496.46.4 理想变压器理想变压器 121LLMk 1.1.理想变压器条件理想变压器条件 理想变压器是实际变压器的理想化模型,是对互感理想变压器是实际变压器的理想化模型,是对互感元件的理想科学抽象,是极限情况下的耦合电感。元件的理想科学抽象,是极限情况下的耦合电感。(2 2)全耦合)全耦合(1 1)无损耗)无损耗线圈导线无电阻,做芯子的铁磁材料的线圈导线无电阻,做芯子的铁磁材料的磁导率无限大。磁导率无限大。(3 3)参数
32、无限大)参数无限大nLLMLL 2121, 2, 1NN ,但但 以上三个条件在工程实际中不可能满足,但在一些以上三个条件在工程实际中不可能满足,但在一些实际工程概算中,在误差允许的范围内,把实际变压器当实际工程概算中,在误差允许的范围内,把实际变压器当理想变压器对待,可使计算过程简化。理想变压器对待,可使计算过程简化。50 i1122N1N2 2211212.2.理想变压器的主要性能理想变压器的主要性能(1)变压关系)变压关系1 kdtdNdtdu 111 dtdNdtdu 222 nNNuu 2121*n:1+_u1+_u2*n:1+_u1+_u2理想变压器模型理想变压器模型若若nNNuu
33、 212151(2 2)变流关系)变流关系i1*L1L2+_u1+_u2i2MdtdiMdtdiLu2111 )()(1)(210111tiLMduLtit 考虑到理想化条件:考虑到理想化条件: 121LLMk nLLL 21211NN ,0nLLLM1121 )(1)(21tinti 若若i1、i2一个从同名端流入,一个从同名端流出,则有:一个从同名端流入,一个从同名端流出,则有:)(1)(21tinti n:1理想变压器模型理想变压器模型52(3 3)变阻抗关系)变阻抗关系ZnIUnInUnIU22222211)( /1 *1 I2 I+2 U+1 Un : 1Z1 I+1 Un2Z 理想
34、变压器的阻抗变换性质只改变阻抗的大理想变压器的阻抗变换性质只改变阻抗的大小,不改变阻抗的性质。小,不改变阻抗的性质。注注53(b)理想变压器的特性方程为代数关系,因此理想变压器的特性方程为代数关系,因此它是无记忆的多端元件。它是无记忆的多端元件。 21nuu 211ini *+n : 1u1i1i2+u20)(111112211 niuniuiuiup(a a)理想变压器既不储能,也不耗能,在电路)理想变压器既不储能,也不耗能,在电路中只起传递信号和能量的作用。中只起传递信号和能量的作用。(4)功率性质)功率性质表明:表明:54例例1已知电源内阻已知电源内阻RS=1k ,负载电阻负载电阻RL=10 。为使为使RL上获得最大功率,求理想变压器的变比上获得最大功率,求理想变压器的变比n。n2RL+uSRS当当 n2RL=RS时匹配,即时匹配,即10n2=1000 n2=100, n=10 .* *n : 1RL+uSRS应用变阻应用变阻抗性质抗性质55例例21 I2 I*+2 U+1 U1 : 1050 +V010o 1 .2 U求求解:列方程解:列方程 10121UU 2110II o110101 UI2250 IU解得解得V033.33o2 U5610.5 10.5 实际变压器的等效电路实际变压器的等效电路实际变压器是有损耗的,也不可能全耦合,实际变压
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地产聘用合同范本
- 土地买卖协议2024细则
- 滕州租房合同范本
- 治理尾气合同范本
- 演员敬业合同范本
- 2024年民用建筑设计服务协议范本
- 建筑垃圾保洁合同范本
- 联营联建合同范本
- 2024技术开发项目协议要约
- 创新基础学习通超星期末考试答案章节答案2024年
- EN779-2012一般通风过滤器——过滤性能测定(中文版)
- 母版_安徽省中小学生转学申请表
- YY∕T 0106-2021 医用诊断X射线机通用技术条件
- 小组合作学习方法指导(课堂PPT)
- 工程造价咨询费黑价联[2013]39号
- 聚氨酯车轮容许载荷的计算方法
- 五年级地方教学计划
- 河北省廊坊市房屋租赁合同自行成交版
- 电商销售奖励制度
- 关于设置治安保卫管理机构的通知(附安全保卫科职责)
- 浅论国省道干线公路养护管理存在问题与应对措施
评论
0/150
提交评论