

下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1例析绝对值问题的求解方法绝对值是初中数学中的一个十分重要的基本概念。一个数的绝对值就是数轴上表示这个数的点与原点的距离,记作a。由绝对值的几何意义,有:一个正数的绝对值等于它本身;一个负数的绝对值等 于它的相反数,零的绝对值等于零。绝对值是非负数。同学们在解答有关绝对值问题时,必须理解上面的几个要点。另外还必须掌握几种常见的解题方法。下面举例说明,供同学们在学习这部分知识时参考。一、利用绝对值的定义解题例i. 简:1+卩+冲(x Y -1)分析:要去掉绝对值符号,利用定义,必须知道绝对值里面的式子的符号,利用绝对值的代 数意义去掉绝对值符号,从而解决问题。这是解绝对值问题的最常用方法。解:因
2、为xv1所以1+ xV0所以1 + x = -(1 + x )所以1+1 +x| =1(1 +x)=|x = x二、利用分类讨论的思想方法解题例2.化简:X 1 +|x3分析:要去掉两个绝对值的符号,就要同时确定两个绝对值里的代数式的正负号,可以零点分段法,用分类讨论的思想方法来解。解:当x3时,原式=(x-1)+(x-3)=2x-4当1vxv3时,原式=(x-1)+(3-x)=2当x1时,原式=(1-x)+(3-x)=4-2x三、禾U用绝对值的非负性解题 例3.已知:x+3 +|42y = 0,求2x+y的值。分析:由绝对值的几何意义移知:绝对值是一个非负数。如果几个非负数的和等于零,那么每
3、一个数都必须等于零。这是一个重要的性质。所以x +3 =0, 42y =0所以x = 3, y = 2所以2x y = 2-32 = -4四、利用数形结合的思想方法解题例4适合2a +7 + 2a 1 =8的整数a的值的个数有()A.5个B.4个C.3个D.2个解:由2a +7 +2a -1 8得a -1 a=4 2丿2解:因为x+3工0,42y王0且x + 3 + 42y =0根据绝对值的几何意义,此式表示数轴上A OB x71点P(a)到点A()和点B(-)的距离之和,由于AB=4,所以P点只能是线段AB上2271的点,即一_a一,所以整数a=-3,-2,-1,0;故选B。五、利用公式法解
4、题例5已知abv0,求a2b-b2a+ab(a-b)的值分析:如用定义,则要分四种情形进行分类讨论,比较麻烦。若根据a2=a2,|a|b=ab先变形,则可避免分类讨论。解:原式=a2b-b2a+ab(a-b)=a b(a-b)+ab(a-b)=(a-b)(ab+ab)=(a-b)(-ab+ab)=O六、利用绝对值的性质解题例6:求方程x-2 +x-3 =1的实数根的个数分析:一般是分区间讨论求解;亦可利用数形结合法求解。但若注意到x - 2- 3 = 1,再利用性质:若a +|b| = a b,贝Ua与b异号。解:原方程可化为:x - 2+x - 3=(x - 2) -(x -3),则(x-2)(x-3)0解得2x3因此原方程有无限多个实数根七、禾U用绝对值的性质解题例7:已知有理数t满足1 t =1+|t,求t 2006 1t的值。分析:一般是分区间,求出满足条件的t的值,再代入求值。实际上,平方法是去绝对值的一种常用方法。解:原等式两边平方得:1 -2t t1 2t t2,所以t =-t,即t0所以t 2006 1t=(t2006)(1t )=2005八、利用观察法解题例&满足ab +ab=1的非负整数对(a,b)的个数是()A. 1 B2 C3 D4解:由ab +ab=1且a,b为非
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字化财务管理的趋势与未来计划
- 财务报表分析的要点试题及答案
- 新冠疫情期间的安保工作总结与反思计划
- 培养班级成员的责任感计划
- 应对职场挑战的策略思考计划
- 幼儿园科学与技术手工课程计划
- 《清贫》教学课件大纲
- 银行从业资格证考试重点复习领域试题及答案
- 银行从业资格证考试方法学习试题及答案
- Module6Hobbies语法Grammar简单句的六种基本句型
- 2025新能源考试试题及答案
- 小学思政教育主题班会
- “良知与悲悯”高频素材积累-2024-2025学年高一语文单元写作深度指导(统编版必修下册)
- 2024山西三支一扶真题及答案
- 技术经纪人(初级)考试试题(附答案)
- 2025年江苏省南通启东市江海产业园招聘1人历年高频重点提升(共500题)附带答案详解
- 《大型商务酒店网络规划与设计》8800字
- GB/T 45077-2024国家公园项目建设指南
- 治安 课件教学课件
- 中韩文化对比
- 乡土中国 读书分享
评论
0/150
提交评论