鸡兔同笼问题(一)五种基本公式和例题讲解(共3页)_第1页
鸡兔同笼问题(一)五种基本公式和例题讲解(共3页)_第2页
鸡兔同笼问题(一)五种基本公式和例题讲解(共3页)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上(奥数)鸡兔同笼问题(一)五种基本公式和例题讲解 (一)已知总头数和总脚数,求鸡、兔各多少(假设法):假设全是鸡:口诀:假“鸡”得“兔”(第一次算得的数)(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。 或者假设全是兔:口诀:假“兔”得“鸡”(第一次算得的数) (每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一 (100-2×36)÷(4-2)=14(只)兔;3

2、6-14=22(只)鸡。解二 (4×36-100)÷(4-2)=22(只)鸡;36-22=14(只)兔。答:略(二)已知总头数和鸡 、兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式仍属 假“鸡”得“兔”类型(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数仍属假“兔”得“鸡”类型或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。(例如:鸡和兔总共107只,鸡比兔多58只脚,鸡和兔各几只?(1)假设全是鸡:(2×107-58)

3、7;(2+4)=26(只兔);107-26=81(只鸡) 因为鸡脚比兔脚多58,所以应减去58 (2)假设全是兔: (4×107+58)÷(2+4)=81(只鸡); 107-81=26(只兔) 因兔脚比鸡脚少58,所以应加上58(三)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。仍属 假“鸡”得“兔”类型(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。仍属假“兔”得“鸡”类型或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数

4、=兔数。例如:鸡和兔总共107只,兔比鸡多56只脚,鸡和兔各几只?(2×107+56)÷(2+4)=45(只兔);107-45=62(只鸡) 因为鸡脚比兔脚少56,所以应加上56在此处键入公式。或(4×107-56)÷2+4=62(只鸡);107-62=45(只兔) 因为兔脚比鸡脚多56,所以应减去56说明:每增加(或减少)一只鸡(或兔),它们脚数的差就是(2+4)(四)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:(两次总脚数之和)÷(每只鸡、兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)&

5、#247;2=鸡数;(两次总脚数之和)÷(每只鸡、兔脚数之和)-(两次总脚数之差)÷(每只鸡、兔脚数之差)÷2=兔数。例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只?”分析:由题意知,鸡比兔多解 法一:(1)(52+44)÷(4+2)+(52-44)÷(4-2)÷2 =(16+4)÷2 =20÷2=10(只鸡) (2)(52+44)÷(4+2)-(52-44)÷(4-2)÷2 =(16-4) =12÷2=6(只兔) (答略)或:解:(5

6、2-44)÷4-2=4(只兔)鸡比兔多4只 法二: 设鸡有x只,则兔有(x-4)只。 法三:解:设兔有x只,则鸡有(x+4)只。 (x-4)×4+2x=44 (x+4)×2+4x=44 4x-16+2x=44 2x+8+4x=44 6x=60 6x=36 X=10 x=6 10-4=6(只兔) 6+4=10(只鸡)答:略 答:略(五)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数;或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一 (4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)1000-18525÷19=1000-975=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论