单元教材分析一元二次方程_第1页
单元教材分析一元二次方程_第2页
单元教材分析一元二次方程_第3页
单元教材分析一元二次方程_第4页
单元教材分析一元二次方程_第5页
已阅读5页,还剩164页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、单元教材分析一元二次方程年级九年级班级九年级(1)(2)班任教教师丁少鹏班级人数85人内容分析教材内容1本单元教学的主要内容 一元二次方程概念;解一元二次方程的方法;一元二次方程应用题2本单元在教材中的地位与作用一元二次方程是在学习一元一次方程、二元一次方程、分式方程等基础之上学习的,它也是一种数学建模的方法学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程,也是初中数学的重点.本章的知识结构一元二次方程的概念一元二次方程的解法开平方法因式分解法配方法公式法一元二次方程的应用ax2+bx+c=0(a0)可直接化成x2=p(p0)或(mx+n)2=p(p0)的一元二次方程)x=叫

2、做一元二次方程ax2+bx+c=0(a0)的求根公式ax2+bx+c=0的两根;教学重点 1一元二次方程及其它有关的概念 2用配方法、公式法、因式分解法降次解一元二次方程 3利用实际问题建立一元二次方程的数学模型,并解决这个问题教学难点 1一元二次方程配方法解题 2用公式法解一元二次方程时的讨论 3一元二次方程根的判别式. 4.一元二次方程根与系数的关系5.建立一元二次方程实际问题的数学模型;方程解与实际问题解的区别教材地位及知识间内在联系一元二次方程是初中数学的基础内容,在初中数学中占有重要地位,学习和运用一元二次方程不仅综合运用了以前所学的多方面的知识,同时也为进一步的学习和应用打好基础。

3、所以,本章知识的学习在整个代数中起承前启后的作用。它既是对已学过的知识实数、整式、分式和一次方程、方程组、不等式知识的巩固和深化,又是为今后学习二次函数、二次不等式等内容奠定了基础。学生分析学情分析初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一特点,一方面要运用直观生动的生活实例,激发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。促进学生个性发展。从认知

4、基础上看,学生已经学习了一元一次方程、平方根、因式分解等知识,为本章的学习奠定了基础。学生在利用方程解决实际问题的过程中,会发现仅用这些知识是不能够解决的,因此迫切的需要一元二次方程这个解决问题的工具。学生学习时应注意的地方1一元二次方程 教学的重点是对方程的一般形式的认识和对方程解的理解并为后续通过转化求方程解奠定思想基础。 2一元二次方程的解法本节是本章的核心内容,主要是一元二次方程的各种解法。其中的一元二次方程的配方法和应用一元二次方程知识理解应用问题是重点,而这两个重点又是教学过程中的难点。一元二次方程的解法,尤其是公式法是学好本章的关键。因此,本节又是全章的重点,是学好本章的基础。

5、关于一元二次方程根与系数的关系,实际上,求根公式就体现了根与系数的关系,由于课程标准中没有涉及,但这部分内容对于今后的学习是很重要的,在教学中可以作为探索性学习的内容,让学生自己进行探索并得出结论。 3一元二次方程的应用 列方程解应用问题,前面一元一次方程的应用已学习过相关的知识,但是列一元二次方程解应用题仍然是难点,其原因是数量关系比较复杂且隐蔽;应用题所反映的实际背景比较复杂而学生又不太熟悉;所列方程也逐步复杂。主观上学生一开始受算术解法思维的定势影响,缺乏广泛的社会经济生产和生活以及相关学科方面的知识,理解文字语言和数学语言等方面的能力较差。其中方程应用题求解,大体上都是这样六个步骤:审

6、题,理解题意,明确题中涉及几个量,有几个是已知量,有几个是未知量,它们之间有什么关系等等;设元,根据题目要求,选择合适的未知数,又分为直接设元法、间接设元法。同时还要考虑设几个未知数为宜;列式,分析题目中量与量的关系,关键是找出题目中的相等关系,这时,要注意挖掘题目中的那些隐蔽的相等关系,有时,又要辅之使用图示法、列表法等一些直观手段;求解;检验,既要检验得到的解是否符合原方程或原方程组,又要检验所得的解对实际问题是否有意义;作答,写出正确合理的答案。在教学中可以结合问题解决的策略,让学生主动参与,自主建构和合作学习,体会数学建模的基本思想与方法。教学目标教学目标1知识与技能了解一元二次方程及

7、有关概念;掌握通过配方法、公式法、因式分解法降次解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题2过程与方法(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型根据数学模型恰如其分地给出一元二次方程的概念(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等(3)通过掌握缺一次项的一元二次方程的解法直接开方法,导入用配方法解一元二次方程,又通过大量的练习巩固配方法解一元二次方程(4)通过用已学的配方法解ax2+bx+c=0(a0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac0,b2-4ac=0,b2

8、-4ac0(5)通过实例探索一元二次方程的根与系数的关系.(6)通过复习八年级上册整式的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它(7)提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题3情感、态度与价值观经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型;经历用配方法、公式法、分解因式法解一元一次方程的过程,使同学们体会到转化等数学思想;经历设置丰富的问题情景,使学生体会到建立数学模型解决实际问题的过程,从而更好地理解方程的意义和作用,激发学生的学习兴趣课时安排2

9、2.1一元二次方程2课时 其中:一元二次方程的概念1课时 22.2一元二次方程的解法7课时 其中:开方法、配方法2课时 公式法2课时因式分解法解一元二次方程2课时根与系数的关系1课时223一元二次方程的应用2课时小结2课时本章体现的数学思想方法本章体现的数学思想方法 本章从内容上看是初中代数的重点,从数学思想方法方面来看,也是初中数学中比较全面体现的一章。 1方程的思想 方程本身就提供了一种重要的数学思想方法,这一点在一元二次方程中体现的更为充分。学习方程不仅为进一步学习其他知识打下基础,不仅可用于解决一些实际问题,而且在更广泛的意义上讲,通过方程可以沟通已知与未知之间的联系,从而由解方程就可

10、以使问题得以解决,通常称之为方程思想。方程思想作为一种数学思想,在数学发展史上有重要作用,对求解数学问题来说也有重要的意义。 2公式解法 一元二次方程的公式解法在数学思想方法上有重要意义。首先,公式法是人们所知的多次方程的第一种公式(根式)解,它为以后进行公式解的研究开辟了道路,并且是引起近似代数的起源问题之一,在数学的学习中也有重要意义;其次,公式法解体现了数学中的算子的思想,将数学问题进行抽象化、符号化、程序化,这是数学发展的重要的途径。 3分类讨论的数学思想 一元二次方程求根公式中,涉及开方问题,即对 要实施开平方,而前面已经学过负数没有平方根。因此 的状态就决定了一元二次方程根的状态。

11、必须对 的符号进行讨论。分类讨论的数学思想是一种极为重要的数学思想方法,教材中对= 的三种分类讨论隐含在课堂教学之中,通过“想一想”让学生自然地得到结论,降低由于数学思想上的要求所带来的学习上的难度,这是一种合理的处理方法。实际上,判别式的讨论是不解方程而对方程的根进行定性研究的重要指标。在研究二次函数的图象和性质等方面有重要意义,在研究二次曲线的问题时有重要地位。判别式实质上是利用方程的系数研究方程的性质,是一种以局部研究探求具体性质的方法。找一种关键性的数量关系去定性地研究一类对象,也是一种常见的数学思想方法。 4转化(化归)的数学思想 在本章中更突出地表示出“转化”的思想方法。如利用因式

12、分解法解一元二次方程就是将一元二次方程转化为两个一元一次方程。严格地说,转化的思想是数学中认识和掌握新知识的重要途径,掌握这种方法,可以提高学生的数学能力,拓展学生数学知识。如换元法就是一种很重要的转化思想,这在本章也有不少的体现。教学策略因为学生已经学习了一元一次方程及相关概念,针对九年级学生的年龄特点和心理特征,结合他们的认知水平,采用探索学习的方式,以类比发现法为主,以讨论法、练习法为辅的教学方法;教学中力求体现“问题情景-数学模型-概念归纳”的模式。但是由于学生将实践问题转化为数学方程的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察直观形象的演示,从具体的问题情景中抽象出数

13、学问题,建立数学方程,同时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。教学实施1一元二次方程 本节包括一元二次方程的概念、因式分解法解一元二次方程,这一单元是本章的基础,教材两个问题中引入了一元二次方程的概念,一个问题是学生所熟悉的正方形和长方形的面积,另一个问题是从报纸上公布的统计数据,教学的重点是对方程的一般形式的认识和对方程解的理解,在此基础上,引入用因式分解法求一元二次方程解的方法,将这种解安排在此处,其目的是为了加强学生对学习方程目的的理解,并为后续通过转化求方程解奠定思想基础。 2一元二次

14、方程的解法本节是本章的核心内容,主要是一元二次方程的各种解法。其中的一元二次方程的配方法和应用一元二次方程知识理解应用问题是重点,而这两个重点又是教学过程中的难点。一元二次方程的解法,尤其是公式法是学好本章的关键。因此,本节又是全章的重点,是学好本章的基础。 一元二次方程的解法,课本介绍了四种,即直接开平方法、配方法、公式法及因式分解法。 直接开平方法适用于 (b0)模式的方程。实际上,给出的一般方程只要存在实根,就可以用配方法转化为 的形式。例如,课本中将方程 转化为 ,因此配方法是直接开方法的延伸,而直接开平方法是配方法的基础。 在配方法解一元二次方程的基础上,很自然地推出一元二次方程的求

15、根公式,实际上就是对一般形式 (a0)的一元二次方程实施配方法的结果。 对于三种解法,公式法可以是一种“万能”方法,只要= 0,将系数a,b,c代入公式即可求解。在教学中注意一元二次方程中 的a0的条件。在配方时应强调方程两边同时加上“一次项系数之半的平方”或在左端加上“一次项系数之半的平方”再减去“一次项系数之半的平方”,实质上是方程的一种同解变形,这是必须反复训练方可达到学生熟练进行配方的目的,它也是推导求根公式的基础。 对= 的讨论,首先要渗透分类讨论的思想,另外,对= =0的情况,一定要强调有两个相等的实根:这与方程根的理论一致,学生开始会认识只有一根,要反复强调,以纠正这种不正确的或

16、说是不严密的结论。对= 3通过画圆的切线,训练学生的作图能力。情感态度与价值观: 1通过探索有关公式,让学生懂得数学活动充满探索与创造,感受数学的严谨性以及数学结论确定性。 2经历观察、猜想、证明等数学活动过程,发展合情推理能力和初步的演绎推理能力,能有条理地、清晰地阐述自己的观点。对应课标 1学会点与圆,直线与圆、圆和圆、正多边形和圆的位置关系及对应的数量关系。2知道三角形的内切圆、外接圆、内心、外心。3掌握切线的性质定理、判定定理。4掌握切线长定理。5掌握正多边形的有关计算。 主题单元问题设计 1如何确定点与圆,直线与圆、圆和圆、正多边形和圆的位置关系 2如何利用切线的性质定理、判定定理来

17、解决一些具体的问题3如何运用切线长定理解决一些实际问题4如何对正多边形进行计算专题划分 专题一:点和圆的三种位置关系(1课时)专题二:直线和圆的三种位置关系(5课时) 专题三:圆和圆的五种位置关系(2课时)专题四:正多边形和圆的位置关系(2课时) 专题一点和圆的位置关系所需课时 1课时 专题一概述(介绍本专题在整个单元中的作用,以及本专题的主要学习内容、学习活动和学习成果) 圆是日常生活中常见的图形之一,也是平面几何中的基本图形。本专题结合飞镖比赛问题,得出点和圆的三种位置关系,接下来讨论了过三点的圆,并结合“过同一直线三点不能作圆”介绍了反证法。反证法的思想在七年级上册就有涉及,是一种间接证

18、法,学生接受有一定的困难,因此,主要是要求学生理解反证法的思想,运用点和圆的位置关系、数量关系解决实际问题。本专题学习目标(描述该学习所要达到的主要目标) 1理解并掌握设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr及其运用。 2复习圆的两种定理和形成过程,并经历探究一个点、两个点、三个点能作圆的结论及作图方法,给出不在同一直线上的三个点确定一个圆,接下去从这三点到圆心的距离逐渐引入点P到圆心距离与点和圆位置关系的结论并运用它们解决一些实际问题。 3了解三角形的外接圆和三角形外心的概念。4了解反证法的证明思想。 本专题问题设计 1、如何结合数值来

19、确定点和圆的位置关系 2、什么是三角形外接圆、外心,它们有什么特殊性质3、什么是反证法,如何用反证法来证明问题 所需教学材料和资源(在此列出学习过程中所需的各种支持资源)信息化资多媒体课件 源常规资源飞镖、标盘教学支撑环境教室 其他 学 习活动设计(针对该专题所选择的活动形式及过程) 一、课题引入:让学生三人搞一次掷飞镖比赛。教师把镖盘钉在一面土上,让三名学生轮流掷飞镖。规则是谁掷出落点离红心越近,谁就胜。如下图中A、B、C三点分别是他们三人某一轮掷镖的落点,你认为这一轮中谁的成绩好? 二、请同学们口答下面的问题。1、圆的两种定义是什么?2、如下图中A、B、C三点分别是他们三人某一轮掷镖的落点

20、,你认为这一轮中谁的成绩好?三、自学新知 自学提示:自学教材第90页第92页推论前内容,尝试自主解决以下问题: 1、思考:平面上的一个圆把平面上的点分成哪几部分?各部分的点与圆有什么共同 特征? 归纳小结:设O的半径为r,点P到圆的距离为d, 则有:点P在圆外圆的外部可以看成是的点的集合。 点P在圆上圆是的点的集合。 点P在圆内圆的内部可以看成是的点的集合; 2、探究、实践、交流: (1)、平面上有一点A,经过已知A点的圆有个,圆心为。 (2)、平面上有两点A、B,经过已知点A、B的圆有个,它们的圆心分布的特点是。 (3)、平面上有三点A、B、C,经过A、B、C三点的圆分为两类:一种是三点在一

21、条直线上,这时的圆有个,圆心为;三点不在一条直线上,这时经三点作圆。上述结论用于三角形,可得:经过三角形的三个顶点作圆。 3、有关概念: 经过三角形的三个顶点可以做一个圆,并且只能画一个圆,这个圆叫做。 外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形的。三角形的外心就是,它到三角形的。4、想一想 一个三角形的外接圆有几个?一个圆的内接三角形有几个?什么是反证法?用反证法证明的第一步是什么?5、教师提示:可更具本班的具体情况而定。四、自学检查 1、已知矩形ABCD的边AB=3厘米,AD=4厘米 (1)以点A为圆心,3厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(2)以点A为

22、圆心,4厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?(3)以点A为圆心,5厘米为半径作圆A,则点B、C、D与圆A的位置关系如何?2、判断下列说法是否正确 (1)任意的一个三角形一定有一个外接圆().(2)任意一个圆有且只有一个内接三角形()(3)经过三点一定可以确定一个圆() (4)三角形的外心到三角形各顶点的距离相等()四、当堂训练 1、课本93页练习1.2.3.4题 2、课本P101习题24.2复习巩固1,综合运用8、10(第10题做在书上)五、归纳总结:本节课你有哪些收获?请与同学们分享。教学反思 教学评价可评价的学习要素 点和圆的位置关系、数量关系,当堂测试 专题二 直线和圆

23、的位置关系 所需课时5课时 专题一概述(介绍本专题在整个单元中的作用,以及本专题的主要学习内容、学习活动和学习成果) 圆的教学在平面几何中乃至整个中学教学都占有重要的地位,而直线和圆的位置关系的应用又比较广泛,它是初中几何的综合运用,又是在学习了点和圆的位置关系的基础上进行的,为后面的圆与圆的位置关系作铺垫的一节课,在今后的解题及几何证明中,将起到重要的作用. 本专题学习目标(描述该学习所要达到的主要目标) 根据学生已有的认知的基础及本课的教材的地位、作用,依据教学大纲的确定本课的教学目标为: (1)知识目标: a、知道直线和圆相交、相切、相离的定义。b、根据定义来判断直线和圆的位置关系,会根据直线和圆相切的定义画出已知圆的切线。 c、根据圆心到直线的距离与圆的半径之间的数量关系揭示直线和圆的位置。2)能力目标: 让学生通过观察、看图、列表、分析、对比,能找出圆心到直线的距离和圆的半径之间的数量关系,揭示直线和圆的关系。此外,通过直线与圆的相对运动,培养学生运动变化的辨证唯物主义观点,通过对研究过程的反思,进一步强化对分类和归纳的思想的认识。 3)情感目标: 在解决问题中,教师创设情境导入新课,以观察素材入手,像一轮红日从海平面升起的图片,提出问

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论