版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、 磨削硬质合金刀具时钴浸出机理的研究 更新时间:2009-08-11 14:24:01
2、 1 引言磨削液在磨削硬质合金刀具的过程中不仅可以降低磨削温度,而且可起到提高磨削质量和磨削效率的作用,因此在加工中得到广泛使用。但据近期国外文献报道,在磨削硬质合金刀具时采用磨削液有可能使硬质合金中的钴浸出。钴是硬质合金材料中的粘结剂,它的浸出将大大降低硬质合金刀具的使用寿命;同时,磨削废液中钴含量过高会污染环境,对工人身体健康造成危害。因此,研究磨削硬质合金刀具时的钴浸出机理,寻找减少或避免刀具中钴浸出的有效方法,具有十分重要的意义。目前
3、国内尚未见报道这方面的研究成果。为此,我们模拟硬质合金刀具的磨削过程设计了一系列机械试验,并对试验结果进行了分析测定,采用微乳液介质分光光度法测定硬质合金刀具磨削前后磨削液中的钴含量,用扫描电子显微镜对硬质合金刀具进行测试分析,最后根据试验结果综合推导了钴浸出机理,并提出了解决问题的初步方案。 2 模拟试验与分析1. 机械试验 通过模拟硬质合金刀具的实际磨削过程,分别进行了磨削试验、摩擦试验和浸泡试验。 a. 磨削试验 刀具:YG6硬质合金刀具;砂轮:直径?150mm,绿色碳化硅磨料,粒度46#;机床:CA6140型车床,转速1120r/min。 试验时,将砂轮装在自制芯轴上,芯轴一端卡在三爪
4、卡盘上,另一端用顶尖顶住;硬质合金刀具固定在刀架上。磨削过程中分别使用600ml 蒸馏水、油酸三乙醇胺和三乙醇胺三种磨削液。样品编号及试验数据见表1。 表1 磨削试验数据磨削液种类硬质合金刀具磨削液(磨削后)磨削时间(min)磨削前磨削后试样质量(g)试样质量(g)试样体积蒸馏水C0113.3C1113.0L1200(ml)25油酸三乙醇胺13.7C1213.3L2三乙醇胺13.0C1312.4L3由表1 可知,在相同的加工条件和磨削时间下,分别使用蒸馏水(L1)、油酸三乙醇胺(L2)、三乙醇胺(L3)为磨削液时,刀具磨损量依次增加(分别为0.3g、0.4g 和0.6g),可见以三乙醇胺为添加
5、剂的磨削液磨削效率较高。磨削前、后磨削液的体积由于水分蒸发而发生变化,但不影响钴浸出量测定。用于试验的三种磨削液体积相同,因此其钴含量与浸出能力成正比。 b. 摩擦试验 将砂轮换成直径?105mm、厚度30mm的钢套,在与磨削试验相同的试验条件下,以油酸三乙醇胺为润滑液,用YT硬质合金刀具与钢套平面部分进行摩擦。样品编号及试验数据见表2。表2 摩擦试验数据 摩擦前摩擦后摩擦时间(min)硬质合金刀具试样C02C1415质量(g)80.080.0钢片试样F0F1磨削液试样L4体积(ml)500150c. 浸泡试验 用200ml油酸三乙醇胺磨削液浸泡YG8硬质合金刀具:经90100水浴3
6、小时后,在常温下浸泡15天。浸泡后溶液体积为25ml,液体样品编号为L5。经分光光度分析,L5中钴含量为110g/ml。2. 微乳液介质分光光度分析 a. 仪器与试剂 仪器:721 型分光光度计。 试剂:Co(II)标准溶液:取CoCl2. 6H2O配成1g/L贮备液,再稀释为0.1mg/ml钴工作液;微乳液:先配制SDS(十二烷基硫酸钠):正丁醇:正庚烷=63:27:10(重量比)的原液,然后配成含水85%的微乳液;0.2%PAN的乙醇溶液;pH=5的HAc-NaAc缓冲溶液(上述试剂中除SDS为化学纯外,均为分析纯)。 b. 试验方法 取0.1ml钴工作液于容量为25ml的瓶中,依次加入p
7、H=5的缓冲溶液2.0ml、PAN溶液0.7ml,用微乳液定容,摇匀。静置210分钟后,用721型分光光度计于波长586nm处,用1cm比色皿,以试剂空白为参比测定溶液的吸光度,作出工作曲线。 分别取0.11ml磨削后的蒸馏水(L1)、油酸三乙醇胺(L2)和三乙醇胺(L3),按上述方法测定钴含量,测量结果列入表3。表3 分光光度分析结果试样L1L2L3L4L5钴含量(g/ml)9.3014.5023.700.70110c. 分析结果 分光光度分析结果见表3。 光度分析结果表明,在磨削硬质合金刀具的过程中,三种磨削液均可使刀具中部分钴浸出,浸出能力按由大到小顺序排列分别为三乙醇胺(钴含量23.7
8、0g/ml)、油酸三乙醇胺(钴含量14.50g/ml)、蒸馏水(钴含量9.30g/ml)。 光度分析结果还表明,当硬质合金刀具与钢片摩擦时,使用的油酸三乙醇胺润滑液钴浸出量较少(L4中钴含量仅为0.70g/ml,远小于L2中的钴含量);而用油酸三乙醇胺长时间浸泡刀具,在常温下即可使钴大量浸出(L5中钴含量达110g/ml)。3. 扫描电镜分析 用KYKY2800 型扫描电子显微镜对硬质合金刀具及钢套表面进行测试分析,分析结果见表4。表4 扫描电镜分析结果试样元素重量百分比(%) 原子百分比(%)C01Co5.4915.34W94.5184.66C11Co3.018.82W96.9991.18C
9、12Co2.677.92W97.3392.08C13Co2.005.87W98.0094.13C02Co5.1312.86W90.0572.31Ti4.8114.83C14Co1.432.54Fe24.9946.73W68.0238.63Ti5.5512.10F0Fe98.5397.41Mn0.350.36Al0.591.20Si0.531.04F1Co0.640.63Fe91.5895.05Mn0.550.58Al0.801.71W6.442.03由表4可知,硬质合金刀具经磨削后,刀具中的钴含量减少,且采用不同磨削液时其钴含量按蒸馏水、油酸三乙醇胺、三乙醇胺的顺序递减(由磨削前Co元素占试样
10、重量的5.49%分别减少为3.01%、2.67%和2.00%),表明三种磨削液对钴的浸出能力依次递增并以三乙醇胺最强,这与分光光度分析结果是一致的。此外,刀具与钢套摩擦后,刀具中部分钴元素扩散到钢中(Co元素重量比由试样C02的5.13%减少为C14的1.43%,F1中Co增加到0.60%),同时钢套中部分铁元素扩散到刀具中(C14中Fe增至24.99%),这验证了扩散磨损的存在。3 钴浸出机理探讨根据试验及分析结果可作如下推论:磨削硬质合金刀具时,刀具中钴原子首先被空气氧化为二价钴Co(II),Co(II)可与磨削液中的OH-或三乙醇胺(TEA)反应生成配合物使钴从刀具中浸出。由于油酸三乙醇
11、胺和三乙醇胺磨削液中TEA可与Co(II)配位,且其中的OH-浓度远大于蒸馏水,因此二者对钴的浸出能力均强于蒸馏水。同时,在油酸三乙醇胺磨削液中,三乙醇胺与油酸反应,配位能力降低,且其OH-浓度低于三乙醇胺磨削液,因此三乙醇胺磨削液对钴的浸出能力强于油酸三乙醇胺。 另外,硬质合金刀具与钢摩擦时,硬质合金中的部分W、Co元素会向钢中扩散,而钢中部分Fe元素也会向硬质合金中扩散。因此磨削液中钴含量较少。综上所述,可得出如下结论: 1. 磨削时使用水、油酸三乙醇胺、三乙醇胺作为磨削液,均可使硬质合金刀具中的钴浸出,且浸出能力依次增强。浸出机理为 式中,Co(TEA)和Co(OH)指Co 与TEA 或OH-形成的配合物,并非具体化学式。 2. 常温下,用含三乙醇胺的磨削液长时间浸泡硬质合金刀具可使刀具中的钴元素浸出。 3. 硬质合金刀具与钢摩擦,刀具中钴的损失形式主要为扩散磨损。根据上述结论,为减少硬质合金刀具磨损,避免
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版借款垫资风险控制合作协议范本3篇
- 2025年度智能电网项目可研咨询服务协议正范文本3篇
- 学校化粪池维修工程协议
- 2025版文化旅游项目建议书编制及运营管理合同3篇
- 徒步班组施工合同
- 保险服务标准化管理办法
- 通信设备招投标法规解析
- 电子产品采购招投标改进策略
- 商业广场施工合作协议
- 2025年度模具行业模具设计与制造质量认证合同3篇
- 猪场配怀工作安排方案设计
- GB/T 2-2016紧固件外螺纹零件末端
- GB/T 12467.5-2009金属材料熔焊质量要求第5部分:满足质量要求应依据的标准文件
- GB 17740-1999地震震级的规定
- 安全生产事故举报奖励制度
- 冠心病健康教育完整版课件
- 永久避难硐室安装施工组织措施
- 元旦节前安全教育培训-教学课件
- 国家开放大学《理工英语1》单元自测8试题答案
- 芯片工艺流程课件1
- 人教版八年级下册生物期末测试卷带答案
评论
0/150
提交评论