版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、1.3 函数的基本性质函数的基本性质单调性单调性xy2xy O1x)(1xfxy2xy O1x)(1xfxy2xy O1x)(1xfxy2xy O1x)(1xfxy2xy O1x)(1xfxy2xy O如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?Oxy如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?Oxy如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?Oxy如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyx1x2如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)x1x2如何用如何用x与
2、与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)如何用如何
3、用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1, x2x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1, x2x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1, x2函数函数f (x)在给定在给定区间上为增函数区间上为增函数.增函数的概念:增函数的概念:1.如果对于
4、定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.增函数的概念:增函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1x)(1xfxy2xy O1x)(1xfxy2xy O01x)(1xfxy2xy O1x)(1xfxy2xy O1x)(1xfxy2xy Ox1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间
5、上任取在给定区间上任取x1, x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f (x)在给定在给定区间上为增函数区间上为增函数.x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1, x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f (x)在给定在给定区间上为增函数区间上为增函数.在给定区间上任取在给定区间上任取x1, x2x1x2
6、f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1, x2如何用如何用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f (x)在给定在给定区间上为增函数区间上为增函数.x1x2 f(x1)f(x2)在给定区间上任取在给定区间上任取x1, x2x1x2 f(x1)f(x2)如何用如何用x与与f(x)来描述上升的图象?来描述上升的图象?x2x1Oxyyf(x)f(x1)f(x2)在给定区间上任取在给定区间上任取x1, x2如何用如何
7、用x与与f(x)来描述下降的图象?来描述下降的图象?x2x1Oxyyf(x)f(x1)f(x2)函数函数f (x)在给定在给定区间上为增函数区间上为增函数.函数函数f (x)在给定在给定区间上为减函数区间上为减函数.x1x2 f(x1)f(x2)在给定区间上任取在给定区间上任取x1, x21.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.增函数的概念:增函数的概念:一般地,设函数一般地,设函数f(x)的定义域为
8、的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对
9、于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.增函数、减函数的概念:增函数、减函数的概念:1.如果对于定义域如果对于定义域I
10、内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.增函数、减函数的概念:增函数、减函数的概念:1.如果对于定义域如果对于定义域I内的某个区间上的任意内的
11、某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变
12、量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1
13、, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.增函数、减函数的概念:增函数、减函数的概念:一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.1.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2
14、时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是增函数增函数.2.如果对于定义域如果对于定义域I内的某个区间上的任意内的某个区间上的任意两个自变量的值两个自变量的值x1, x2,当,当x1x2时,都有时,都有f(x1)f(x2),那么就说,那么就说f(x)在这个区间上是在这个区间上是减函数减函数.一般地,设函数一般地,设函数f(x)的定义域为的定义域为I.增函数、减函数的概念:增函数、减函数的概念:函数单调性的概念:函数单调性的概念:函数单调性的概念:函数单调性的概念:函数单调性的概念:函数单调性的概念:-2321-1y-3-44Ox2-231-3-
15、15-5例例1 右图是定义在右图是定义在闭区间闭区间5, 5上上的函数的函数yf(x)的图的图象,根据图象说出象,根据图象说出yf(x)的单调区间,的单调区间,以及在每一单调区以及在每一单调区间上,间上, yf(x)是增函数还是减函数是增函数还是减函数例例1 右图是定义在右图是定义在闭区间闭区间5, 5上上的函数的函数yf(x)的图的图象,根据图象说出象,根据图象说出yf(x)的单调区间,的单调区间,以及在每一单调区以及在每一单调区间上,间上, yf(x)是增函数还是减函数是增函数还是减函数-2321-1y-3-44Ox2-231-3-15-5 函数函数yf(x)的单调区间有的单调区间有5,2
16、),2, 1),1, 3),3, 5,解:解:-2321-1y-3-44Ox2-231-3-15-5 函数函数yf(x)的单调区间有的单调区间有5,2),2, 1),1, 3),3, 5,其中其中yf(x)在在5,2),1, 3)上是减函数,上是减函数,在区间在区间2, 1),3, 5上是增函数上是增函数解:解:例例1 右图是定义在右图是定义在闭区间闭区间5, 5上上的函数的函数yf(x)的图的图象,根据图象说出象,根据图象说出yf(x)的单调区间,的单调区间,以及在每一单调区以及在每一单调区间上,间上, yf(x)是增函数还是减函数是增函数还是减函数-2321-1y-3-44Ox2-231-
17、3-15-5 函数函数yf(x)的单调区间有的单调区间有5,2),2, 1),1, 3),3, 5,其中其中yf(x)在在5,2),1, 3)上是减函数,上是减函数,在区间在区间2, 1),3, 5上是增函数上是增函数图象法图象法解:解:例例1 右图是定义在右图是定义在闭区间闭区间5, 5上上的函数的函数yf(x)的图的图象,根据图象说出象,根据图象说出yf(x)的单调区间,的单调区间,以及在每一单调区以及在每一单调区间上,间上, yf(x)是增函数还是减函数是增函数还是减函数 判定函数在某个区间上的单调性的判定函数在某个区间上的单调性的方法步骤方法步骤:3. 判断上述差的符号判断上述差的符号;4. 下结论下结论1. 设设
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版大理石原材料进出口贸易代理服务协议3篇
- 二零二五年度智慧路灯项目合作协议书范本4篇
- 2025年度环保型挖机转让及维护保养服务协议
- 二零二五版木地板安装与维护保养服务合同4篇
- 2025年牛棚租赁养殖合作协议范本(含技术指导)
- 2025药师证租用合同范本:包含培训与辅导3篇
- 2025年度个人遗产继承贷款合同担保书及遗产评估报告4篇
- 二零二五年度企业财务重组与破产清算服务合同3篇
- 2025年度智慧家居系统搭建与智能家居服务合同4篇
- 二零二五年度工业用地出租合同书
- 2024年人教版小学三年级信息技术(下册)期末试卷附答案
- TB 10012-2019 铁路工程地质勘察规范
- 新苏教版三年级下册科学全册知识点(背诵用)
- 乡镇风控维稳应急预案演练
- 脑梗死合并癫痫病人的护理查房
- 苏教版四年级上册脱式计算300题及答案
- 犯罪现场保护培训课件
- 扣款通知单 采购部
- 电除颤操作流程图
- 湖北教育出版社三年级下册信息技术教案
- 设计基础全套教学课件
评论
0/150
提交评论