下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、反证法在几何问题中的应用反证法是一种非常重要的数学方法,它在几何的应用极为广泛,在平面几何、立体几何、解析几何都有应用,本文选择几个有代表性的应用,举例加以介绍。一、证明几何量之间的关系例1:已知:四边形ABCD中,E、F分别是AD、BC的中点,。求证:。证明:假设AB不平行于CD。如图,连结AC,取AC的中点G,连结EG、FG。E、F、G分别是AD、BC、AC的中点,;,。AB不平行于CD,GE和GF不共线,GE、GF、EF组成一个三角形。 但 与矛盾。例2:直线与平面相交于,过点在平面内引直线、,。求证:。证明:假设PO不垂直平面。作并与平面相交于H,此时H、O不重合,连结OH。由P作于E
2、,于F,根据三垂线定理可知,。,PO是公共边,又因此,OH是的平分线。同理可证,OH是的平分线。但是,OB和OC是两条不重合的直线,OH不可能同时是和的平分线,产生矛盾。例3:已知A、B、C、D是空间的四个点,AB、CD是异面直线。求证:AC和BD是异面直线。证明:假设AC和BD不是异面直线,那么AC和BD在同一平面内。因此,A、C、B、D四点在同一平面内,这样,AB、CD就分别有两个点在这个平面内,则AB、CD在这个平面内,即AB和CD不是异面直线。这与已知条件产生矛盾。所以,AC和BD是异面直线上面所举的例子,用直接证法证明都比较困难,尤其是证两条直线是异面直线,常采用反证法。二、证明“唯
3、一性”问题在几何中需要证明符合某种条件的点、线、面只有一个时,称为“唯一性”问题。例3:过平面上的点A的直线,求证:是唯一的。证明:假设不是唯一的,则过A至少还有一条直线,、是相交直线,、可以确定一个平面。设和相交于过点A的直线。,。这样在平面内,过点A就有两条直线垂直于,这与定理产生矛盾。所以,是唯一的。例4:试证明:在平面上所有通过点的直线中,至少通过两个有理点(有理点指坐标、均为有理数的点)的直线有一条且只有一条。证明:先证存在性。因为直线,显然通过点,且直线至少通过两个有理点,例如它通过和。这说明满足条件的直线有一条。再证唯一性。假设除了直线外还存在一条直线(或)通过点,且该直线通过有
4、理点A与B,其中、均为有理数。因为直线通过点,所以,于是,且。又直线通过A与B两点,所以, ,得。 因为A、B是两个不同的点,且,所以,由,得,且是不等于零的有理数。由,得。此式的左边是无理数,右边是有理数,出现了矛盾。所以,平面上通过点的直线中,至少通过两个有理点的直线只有一条。综上所述,满足上述条件的直线有一条且只有一条。关于唯一性的问题,在几何中有,在代数、三角等学科中也有。这类题目用直接证法证明相当困难,因此一般情况下都采用间接证法。即用反证法或同一法证明,用反证法证明有时比同一法更方便。三、证明不可能问题几何中有一类问题,要证明某个图形不可能有某种性质或证明具有某种性质的图形不存在。
5、它们的结论命题都是以否定形式出现的,若用直接证法证明有一定的困难。而它的否定命题则是某个图形具有某种性质或具有某种性质的图形存在,因此,这类问题非常适宜用反证法。例5:求证:抛物线没有渐近线。证明:设抛物线的方程是()。假设抛物有渐近线,渐近线的方程是,易知、都不为0。因为渐近线与抛物线相切于无穷远点,于是方程组 的两组解的倒数都是0。将(2)代入(1),得 (3)设、是(3)的两个根,由韦达定理,可知,则, (4), (5)由(4)、(5),可推得,这于假设矛盾。所以,抛物线没有渐近线。关于不可能问题是几何中最常见也是非常重要的一种类型。由于它的结论是以否定形式出现,采用直接证法有困难,所以这类问题一般都使用反证法加以证明。四、证明“至少存在”或“不多于”问题在几何中存在一类很特殊的问题,就是证明具有某种性质的图形至少有一个或不多于几个。由于这类问题能找到直接论证的理论根据很少,用直接证法有一定困难。如果采用反证法,添加了否定结论这个新的假设,就可以推出更多的结论,容易使命题获证。例6:已知:四边形ABCD中,对角线AC=BD=1。求证:四边形中至少有一条边不小于。证明:假设四边形的边都小于,由
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 三年级数学上册7长方形和正方形第3课时周长导学案新人教版
- 三年级数学上册第2单元两三位数乘一位数2.8解决问题课时练冀教版
- 慢性胃炎培训课件
- 《先芥蒂与麻醉》课件
- 人教版八年级物理下册全册教案
- 函数的图象课件
- 涂料调色完整版本
- 县级培训安全生产课件
- 2021年山东省中考化学考前《历年真题》(含解析)
- 《作文大赛赛前辅导》课件
- SLT278-2020水利水电工程水文计算规范
- 心灵养生的疗愈之道
- 建筑设计公司的商业计划书
- 建筑景观设计劳务合同
- 人教版PEP六年级英语下册课件unit1
- 人教版四年级数学上册寒假每日一练
- 律师法律服务应急预案
- 主动脉夹层介入手术的护理
- 浙江省嘉兴市经开区2023-2024学年四年级上学期期末学科素养评价科学试题
- 森林火灾灭火器具使用与技巧课件
- 双氧水资源综合利用项目建议书
评论
0/150
提交评论