版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上排列组合问题的解题策略关键词: 排列组合,解题策略 一、相临问题捆绑法例17名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有A22*A66种。评注:一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。二、不相临问题选空插入法例2 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,先把剩下的5人排列,5人之间有6个空,把甲乙在6个空中选2个插入,所以甲、乙二人不相邻的排法总数应为: 种
2、 .评注:若 个人站成一排,其中 个人不相邻,可用“插空”法解决,共有 种排法。三、复杂问题总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有 种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有32个.四、特殊元素优先考虑法 对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。 例4 (1995年上海高考题) 1名老
3、师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法 种解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有72种不同的排法.例5(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有 种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有 种排法,所以不同的出场安排共有 252种.五、多元问题分类讨论法对于元素多,选取情况多,可按要
4、求进行分类讨论,最后总计。例6(2003年北京春招)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为(A ) A42 B30 C20 D12解:增加的两个新节目,可分为相临与不相临两种情况:1.不相临:共有A62种;2.相临:共有A22A61种。故不同插法的种数为:A62 +A22A61=42 ,故选A。例7(2003年全国高考试题)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有 种.(以数字作答) 解:区域与其他四个区域相邻,而其他每个区域都与三个区
5、域相邻,因此,可以涂三种或四种颜色 用三种颜色着色有 =24种方法, 用四种颜色着色有 =48种方法,从而共有24+48=72种方法,应填72. 六、混合问题先选后排法对于排列组合的混合应用题,可采取先选取元素,后进行排列的策略 例8(2002年北京高考)12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有( )A 种B 种C 种D 种解:本试题属于均分组问题。 则12名同学均分成3组共有 种方法,分配到三个不同的路口的不同的分配方案共有: 种,故选A。 例9(2003年北京高考试题)从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,
6、其中黄瓜必须种植,不同的种植方法共有( ) A24种 B18种 C12种 D6种 解:先选后排,分步实施. 由题意,不同的选法有: C32种,不
7、同的排法有: A31·A22,故不同的种植方法共有A31·C32·A22=12,故应选C. 七相同元素分配档板分隔法例10把10本相同的书发给编号为1、2、3的三个学生阅览室,每个阅览室分得的书的本数不小于其编号数,试求不同分法的种数。请用尽可能多的方法求解,并思考这些方法是否适合更一般的情况?本题考查组合问题。解:先让2、3号阅览室依次分得1本书、2本书;再对余下的7本书进行分配,保证每个阅览室至少得一本书,这相当于在7本相同书之间的6个“空档”内插入两个相同“I”(一般可视为“隔板”)共有 种插法,即有15种分法。总之,排列、组合应用题的解题思路可总结为:排组
8、分清,加乘明确;有序排列,无序组合;分类为加,分步为乘。具体说,解排列组合的应用题,通常有以下途径:(1)以元素为主体,即先满足特殊元素的要求,再考虑其他元素。(2)以位置为主体,即先满足特殊位置的要求,再考虑其他位置。(3)先不考虑附加条件,计算出排列或组合数,再减去不合要求的排列组合数。排列组合问题的解题方略排列组合知识,广泛应用于实际,掌握好排列组合知识,能帮助我们在生产生活中,解决许多实际应用问题。同时排列组合问题历来就是一个老大难的问题。因此有必要对排列组合问题的解题规律和解题方法作一点归纳和总结,以期充分掌握排列组合知识。首先,谈谈排列组合综合问题的一般解题规律:1)使用“分类计数
9、原理”还是“分步计数原理”要根据我们完成某件事时采取的方式而定,可以分类来完成这件事时用“分类计数原理”,需要分步来完成这件事时就用“分步计数原理”;那么,怎样确定是分类,还是分步骤?“分类”表现为其中任何一类均可独立完成所给的事件,而“分步”必须把各步骤均完成才能完成所给事件,所以准确理解两个原理强调完成一件事情的几类办法互不干扰,相互独立,彼此间交集为空集,并集为全集,不论哪类办法都能将事情单独完成,分步计数原理强调各步骤缺一不可,需要依次完成所有步骤才能完成这件事,步与步之间互不影响,即前步用什么方法不影响后面的步骤采用的方法。 2)排列与组合定义相近,它们的区别在于是否与顺序有关。3)
10、复杂的排列问题常常通过试验、画 “树图 ”、“框图”等手段使问题直观化,从而寻求解题途径,由于结果的正确性难于检验,因此常常需要用不同的方法求解来获得检验。4)按元素的性质进行分类,按事件发生的连续性进行分步是处理排列组合问题的基本思想方法,要注意“至少、至多”等限制词的意义。5)处理排列、组合综合问题,一般思想是先选元素(组合),后排列,按元素的性质进行“分类”和按事件的过程“分步”,始终是处理排列、组合问题的基本原理和方法,通过解题训练要注意积累和掌握分类和分步的基本技能,保证每步独立,达到分类标准明确,分步层次清楚,不重不漏。6)在解决排列组合综合问题时,必须深刻理解排列组合的概念,能熟
11、练地对问题进行分类,牢记排列数与组合数公式与组合数性质,容易产生的错误是重复和遗漏计数。总之,解决排列组合问题的基本规律,即:分类相加,分步相乘,排组分清,加乘明确;有序排列,无序组合;正难则反,间接排除等。其次,我们在抓住问题的本质特征和规律,灵活运用基本原理和公式进行分析解答的同时,还要注意讲究一些解题策略和方法技巧,使一些看似复杂的问题迎刃而解。下面介绍几种常用的解题方法和策略。一特殊元素(位置)的“优先安排法”:对于特殊元素(位置)的排列组合问题,一般先考虑特殊,再考虑其他。例1、 用0,2,3,4,5,五个数字,组成没有重复数字的三位数,其中偶数共有( )。 A 24个 B.30个
12、C.40个 D.60个分析由于该三位数为偶数,故末尾数字必为偶数,又因为0不能排首位,故0就是其中的“特殊”元素,应该优先安排,按0排在末尾和0不排在末尾分两类:1)0排末尾时,有A42个,2)0不排在末尾时,则有C21 A31A31个,由分数计数原理,共有偶数A42 + C21 A31A31=30个,选B。二总体淘汰法:对于含否定的问题,还可以从总体中把不合要求的除去。如例1中,也可用此法解答:五个数字组成三位数的全排列有A53个,排好后发现0不能排首位,而且数字3,5也不能排末位,这两种排法要排除,故有A53-3A42+ C21A31=30个偶数。三合理分类与准确分步含有约束条件的排列组合
13、问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。四相邻问题用捆绑法:在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再考虑大元素内部各元素间顺序的解题策略就是捆绑法例2、有8本不同的书;其中数学书3本,外语书2本,其它学科书3本若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种(结果用数值表示) 解:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有A55种排法;又3本数学书有A33种
14、排法,2本外语书有A22种排法;根据分步计数原理共有排法A55 A33 A22=1440(种).注:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题五不相邻问题用“插空法”:不相邻问题是指要求某些元素不能相邻,由其它元素将它们隔开解决此类问题可以先将其它元素排好,再将所指定的不相邻的元素插入到它们的间隙及两端位置,故称插空法例3、用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1与2相邻,2与4相邻,5与6相邻,而7与8不相邻。这样的八位数共有( )个(用数字作答)解:由于要求1与2相邻,2与4相邻,可将1、2、4这三个数字捆绑在一起形成一个大元素,这个
15、大元素的内部中间只能排2,两边排1和4,因此大元素内部共有A22种排法,再把5与6也捆绑成一个大元素,其内部也有A22种排法,与数字3共计三个元素,先将这三个元素排好,共有 A33 种排法,再从前面排好的三个元素形成的间隙及两端共四个位置中任选两个,把要求不相邻的数字7和8插入即可,共有A42种插法,所以符合条件的八位数共有A22 A22 A33 A42288(种) 注:运用“插空法”解决不相邻问题时,要注意欲插入的位置是否包含两端位置六顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。例4、6个人排队,
16、甲、乙、丙三人按“甲-乙-丙”顺序排的排队方法有多少种?分析:不考虑附加条件,排队方法有A66种,而其中甲、乙、丙的A33种排法中只有一种符合条件。故符合条件的排法有A66 ÷A33 =120种。(或A63种)例5、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。解:先在7个位置中任取4个给男生,有A74 种排法,余下的3个位置给女生,只有一种排法,故有A74 种排法。(也可以是A77 ÷A33种)七分排问题用“直排法”:把几个元素排成若干排的问题,可采用统一排成一排的排法来处理。例6、7个人坐两排座位,第一排3个人,第二排坐
17、4个人,则不同的坐法有多少种?分析:7个人可以在前两排随意就坐,再无其它条件,故两排可看作一排来处理,不同的坐法共有A77种。八逐个试验法:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。例7.将数字1,2,3,4填入标号为1,2,3,4的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有( )A6 B.9 C.11 D.23解:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。一共有9种填法,故选B九、构造模型 “隔板法”对于较复杂的排列问题,可通过设计另一情景,构造一个隔板模
18、型来解决问题。例8、方程a+b+c+d=12有多少组正整数解?分析:建立隔板模型:将12个完全相同的球排成一列,在它们之间形成的11个间隙中任意插入3块隔板,把球分成4堆,每一种分法所得4堆球的各堆球的数目,对应为a、b、c、d的一组正整解,故原方程的正整数解的组数共有C113 .又如方程a+b+c+d=12非负整数解的个数,可用此法解。十.正难则反排除法对于含“至多”或“至少”的排列组合问题,若直接解答多需进行复杂讨论,可以考虑“总体去杂”,即将总体中不符合条件的排列或组合删除掉,从而计算出符合条件的排列组合数的方法例9、从4台甲型和5台乙型电视机中任意取出3台,其中至少要甲型与乙型电视机各
19、一台,则不同的取法共有( )种 A140种 B80种 C70种 D35种解:在被取出的3台中,不含甲型或不合乙型的抽取方法均不合题意,因此符合题意的抽取方法有C93-C43-C53=70(种),故选C 注:这种方法适用于反面的情况明确且易于计算的习题十一逐步探索法:对于情况复杂,不易发现其规律的问题需要认真分析,探索出其规律例10、从1到100的自然数中,每次取出不同的两个数,使它们的和大于100,则不同的取法种数有多少种。解:两个数相加中以较小的数为被加数,1+100>100,1为被加数时有1种,2为被加数有2种,49为被加数的有49种,50为被加数的有50种,但51为被加数有49种,
20、52为被加数有48种,99为被捕加数的只有1种,故不同的取法有(1+2+3+50)+(49+48+1)=2500种十二一一对应法:例11.在100名选手之间进行单循环淘汰赛(即一场失败要退出比赛)最后产生一名冠军,要比赛几场?解:要产生一名冠军,要淘汰冠军以外的所有选手,即要淘汰99名选手,要淘汰一名就要进行一场,故比赛99场。难点29 排列、组合的应用问题排列、组合是每年高考必定考查的内容之一,纵观全国高考数学题,每年都有12道排列组合题,考查排列组合的基础知识、思维能力.难点磁场()有五张卡片,它们的正、反面分别写0与1,2与3,4与5,6与7,8与9,将其中任意三张并排放在一起组成三位数
21、,共可组成多少个不同的三位数?案例探究例1在AOB的OA边上取m个点,在OB边上取n个点(均除O点外),连同O点共m+n+1个点,现任取其中三个点为顶点作三角形,可作的三角形有( )命题意图:考查组合的概念及加法原理,属级题目.知识依托:法一分成三类方法;法二,间接法,去掉三点共线的组合.错解分析:A中含有构不成三角形的组合,如:CC中,包括O、Bi、Bj;CC中,包含O、Ap、Aq,其中Ap、Aq,Bi、Bj分别表示OA、OB边上不同于O的点;B漏掉AiOBj;D有重复的三角形.如CC中有AiOBj,CC中也有AiOBj.技巧与方法:分类讨论思想及间接法.解法一:第一类办法:从OA边上(不包
22、括O)中任取一点与从OB边上(不包括O)中任取两点,可构造一个三角形,有CC个;第二类办法:从OA边上(不包括O)中任取两点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有CC个;第三类办法:从OA边上(不包括O)任取一点与OB边上(不包括O)中任取一点,与O点可构造一个三角形,有CC个.由加法原理共有N=CC+CC+CC个三角形.解法二:从m+n+1中任取三点共有C个,其中三点均在射线OA(包括O点),有C个,三点均在射线OB(包括O点),有C个.所以,个数为N=CCC个.答案:C例2四名优等生保送到三所学校去,每所学校至少得一名,则不同的保送方案的总数是_.命题意图:本题主要考
23、查排列、组合、乘法原理概念,以及灵活应用上述概念处理数学问题的能力,属级题目.知识依托:排列、组合、乘法原理的概念.错解分析:根据题目要求每所学校至少接纳一位优等生,常采用先安排每学校一人,而后将剩的一人送到一所学校,故有3A种.忽略此种办法是:将同在一所学校的两名学生按进入学校的前后顺序,分为两种方案,而实际题目中对进入同一所学校的两名学生是无顺序要求的.技巧与方法:解法一,采用处理分堆问题的方法.解法二,分两次安排优等生,但是进入同一所学校的两名优等生是不考虑顺序的.解法一:分两步:先将四名优等生分成2,1,1三组,共有C种;而后,对三组学生安排三所学校,即进行全排列,有A33种.依乘法原
24、理,共有N=C =36(种).解法二:分两步:从每个学校至少有一名学生,每人进一所学校,共有A种;而后,再将剩余的一名学生送到三所学校中的一所学校,有3种.值得注意的是:同在一所学校的两名学生是不考虑进入的前后顺序的.因此,共有N=A·3=36(种).答案:36锦囊妙记排列与组合的应用题,是高考常见题型,其中主要考查有附加条件的应用问题.解决这类问题通常有三种途径:(1)以元素为主,应先满足特殊元素的要求,再考虑其他元素.(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置.(3)先不考虑附加条件,计算出排列或组合数,再减去不符合要求的排列数或组合数.前两种方式叫直接解法,后
25、一种方式叫间接解法.在求解排列与组合应用问题时,应注意:(1)把具体问题转化或归结为排列或组合问题;(2)通过分析确定运用分类计数原理还是分步计数原理;(3)分析题目条件,避免“选取”时重复和遗漏;(4)列出式子计算和作答.解排列与组合应用题常用的方法有:直接计算法与间接计算法;分类法与分步法;元素分析法和位置分析法;插空法和捆绑法等八种.经常运用的数学思想是:分类讨论思想;转化思想;对称思想.歼灭难点训练一、填空题1.()从集合0,1,2,3,5,7,11中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_条(用数值表示).2.()圆周上有2n个等分点
26、(n1),以其中三个点为顶点的直角三角形的个数为_.二、解答题3.()某人手中有5张扑克牌,其中2张为不同花色的2,3张为不同花色的A,有5次出牌机会,每次只能出一种点数的牌但张数不限,此人有多少种不同的出牌方法?4.()二次函数y=ax2+bx+c的系数a、b、c,在集合3,2,1,0,1,2,3,4中选取3个不同的值,则可确定坐标原点在抛物线内部的抛物线多少条?5.()有3名男生,4名女生,在下列不同要求下,求不同的排列方法总数.(1)全体排成一行,其中甲只能在中间或者两边位置.(2)全体排成一行,其中甲不在最左边,乙不在最右边.(3)全体排成一行,其中男生必须排在一起.(4)全体排成一行
27、,男、女各不相邻.(5)全体排成一行,男生不能排在一起.(6)全体排成一行,其中甲、乙、丙三人从左至右的顺序不变.(7)排成前后二排,前排3人,后排4人.(8)全体排成一行,甲、乙两人中间必须有3人.6.()20个不加区别的小球放入编号为1、2、3的三个盒子中,要求每个盒内的球数不小于它的编号数,求不同的放法种数.7.()用五种不同的颜色,给图中的(1)(2)(3)(4)的各部分涂色,每部分涂一色,相邻部分涂不同色,则涂色的方法共有几种?8.()甲、乙、丙三人值周一至周六的班,每人值两天班,若甲不值周一、乙不值周六,则可排出不同的值班表数为多少?参考答案难点磁场解:(间接法):任取三张卡片可以
28、组成不同三位数C·23·A(个),其中0在百位的有C·22·A (个),这是不合题意的,故共有不同三位数:C·23·AC·22·A=432(个).歼灭难点训练一、1.解析:因为直线过原点,所以C=0,从1,2,3,5,7,11这6个数中任取2个作为A、B两数的顺序不同,表示的直线不同,所以直线的条数为A=30.答案:302.解析:2n个等分点可作出n条直径,从中任选一条直径共有C种方法;再从以下的(2n2)个等分点中任选一个点,共有C种方法,根据乘法原理:直角三角形的个数为:C·C=2n(n1)个.答案:
29、2n(n1)二、3.解:出牌的方法可分为以下几类:(1)5张牌全部分开出,有A种方法;(2)2张2一起出,3张A一起出,有A种方法;(3)2张2一起出,3张A一起出,有A种方法;(4)2张2一起出,3张A分两次出,有CA种方法;(5)2张2分开出,3张A一起出,有A种方法;(6)2张2分开出,3张A分两次出,有CA种方法.因此,共有不同的出牌方法A+A+A+AA+A+CA=860种.4.解:由图形特征分析,a0,开口向上,坐标原点在内部f(0)=c0;a0,开口向下,原点在内部f(0)=c0,所以对于抛物线y=ax2+bx+c来讲,原点在其内部af(0)=ac0,则确定抛物线时,可先定一正一负
30、的a和c,再确定b,故满足题设的抛物线共有CCAA=144条.5.解:(1)利用元素分析法,甲为特殊元素,故先安排甲左、右、中共三个位置可供甲选择.有A种,其余6人全排列,有A种.由乘法原理得AA=2160种.(2)位置分析法.先排最右边,除去甲外,有A种,余下的6个位置全排有A种,但应剔除乙在最右边的排法数AA种.则符合条件的排法共有AAAA=3720种.(3)捆绑法.将男生看成一个整体,进行全排列.再与其他元素进行全排列.共有AA=720种.(4)插空法.先排好男生,然后将女生插入其中的四个空位,共有AA=144种.(5)插空法.先排女生,然后在空位中插入男生,共有AA=1440种.(6)
31、定序排列.第一步,设固定甲、乙、丙从左至右顺序的排列总数为N,第二步,对甲、乙、丙进行全排列,则为七个人的全排列,因此A=N×A,N= 840种.(7)与无任何限制的排列相同,有A=5040种.(8)从除甲、乙以外的5人中选3人排在甲、乙中间的排法有A种,甲、乙和其余2人排成一排且甲、乙相邻的排法有AA.最后再把选出的3人的排列插入到甲、乙之间即可.共有A×A×A=720种.6.解:首先按每个盒子的编号放入1个、2个、3个小球,然后将剩余的14个小球排成一排,如图,|O|O|O|O|O|O|O|O|O|O|O|O|O|O|,有15个空档,其中“O”表示小球,“|”
32、表示空档.将求小球装入盒中的方案数,可转化为将三个小盒插入15个空档的排列数.对应关系是:以插入两个空档的小盒之间的“O”个数,表示右侧空档上的小盒所装有小球数.最左侧的空档可以同时插入两个小盒.而其余空档只可插入一个小盒,最右侧空档必插入小盒,于是,若有两个小盒插入最左侧空档,有C种;若恰有一个小盒插入最左侧空档,有种;若没有小盒插入最左侧空档,有C种.由加法原理,有N=120种排列方案,即有120种放法.7.解:按排列中相邻问题处理.(1)(4)或(2)(4).可以涂相同的颜色.分类:若(1)(4)同色,有A种,若(2)(4)同色,有A种,若(1)(2)(3)(4)均不同色,有A种.由加法
33、原理,共有N=2A+A=240种.8.解:每人随意值两天,共有CCC个;甲必值周一,有CCC个;乙必值周六,有CCC个;甲必值周一且乙必值周六,有CCC个.所以每人值两天,且甲必不值周一、乙必不值周六的值班表数,有N=CCC2CCC+ CCC=902×5×6+12=42个.数学运算题型之排列、组合、二项式定理·排列组合应用问题 (第一讲)目标1掌握有关排列组合问题的基本解法,提高分析问题与解决问题的能力2通过对典型错误的剖析,学生克服解题中的“重复”与“遗漏”等常见错误培养思维的深刻性与批判性品质重点与难点有条件限制的排列组合应用问题排列数公式:组合数
34、公式(一)有条件限制的排列问题例15个不同的元素a,b,c,d,e每次取全排列(1)a,e必须排在首位或末位,有多少种排法?(2)a,e既不在首位也不在末位,有多少种排法?(3)a,e排在一起有多少种排法?(4)a,e不相邻有多少种排法?(5)a在e的左边(可不相邻)有多少种排法?(教师出题后向学生提出要求;开动脑筋,积极思维,畅所欲言,鼓励提出不同解法,包括错误的解法)师:请同学回答(1)并说出解题思路师:很好!问题(1)是排列问题中某几个元素必须“在”某些位置的问题处理这类问题的原则是:有条件限制的元素或位置优先考虑师:请同学回答(2),并说出解题思路师:在上面解题过程中,很好的运用了有条
35、件限制的位置优先的原则,这种解法是直接法还有其他方法吗?分别在排头、排尾的4种情况大家讨论研究这时学生的思维活跃起来生丙:前一种解法对,后一种解法排列数少了师:遗漏在什么地方呢?减去a排头,即a××××;减去a排尾,即××××a;减去e排头,即 e××××;减去e排尾,即××××e具体一排可以看出,在这四种情况中,a排头e排尾,e排头a排尾各多减了一次学生明白了思维上的错误,教师提出能否把上面错误的解法改造成正确的解法呢?由分析思维上的
36、错误得到正确的认识,学生十分高兴但认识并没有完结师:由上面的分析对我们有什么启发?生丁:在解题过程中具体排一排使我们想的更清楚师:好!“具体排”是一个好方法这是抽象转化为具体的一种思维方法师:请同学回答问题(3),并说出解题思路解题思路是:a,e排在一起,可将a,e看成一个整体,作为1师:好!排在一起的元素用“粘合法”看作一个元素师:请同学回答问题(4),并说出解题思路解题思路是:用5个元素的全排列数减去a,e排在一起的,就是a,e不相邻的师:这是间接法,还有其他方法吗?e不相邻,可将a,e排在上述3个元素排定后形成的4个空档中,排法师:这是一个很好的设计“插空档”的方法对解决排列问题中某几个
37、元素不相邻的问题有普遍性这也是解决这类问题的通法,对多个元素不相邻的问题,第一种解法(间接法)容易产生“重复”或“遗漏”师:请同学回答问题(5),并说出解题思路师:为什么要除以2生:要求a在e的左边(可不相邻)即a,e有序,而a,e间的排列数有2种,所以要除以2师:问题变换为3个元素按一定顺序呢?教师小结:排列应用题是实际问题的一种,解应用问题的指导思想,弄清题意、联系实际、合理设计调动相关的知识和方法是合理设计的基础例1是排列的典型问题,解题方法可借鉴排列问题思考起来比较抽象,“具体排”是一种把抽象转化具体的好方法例2 同室4人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送
38、出的贺年卡,则4张贺年卡不同的分配方式有()(A)6种(B)9种(C)11种(D)23种先让学生独立作,教师巡视,然后归纳不同的解法解法1:列举法(具体排、填方格)设4人为A,B,C,D,他们自己所写的贺卡分别为a,b,c,d,满足条件的分配方式列举如下:因此,共有3×3=9种不同的分配方式,故选B解法2:直接法分两步完成,第一步让A先拿,他可拿b,c,d中的任意一张,有3种方法;假定A拿b,第二步就让B拿,他可拿a,c,d中任意1张,也有3种方法一旦B拿定了,假定B拿a,那么C,D两人的拿法也就随之确定了,只能C拿d且D拿c这1种方法根据乘法原理,共有3×3=9种不同的分
39、配方式,故选B解法3:间接法先不考虑限制条件,即也允许拿自己送的贺年卡,不同的分配方式4人都拿自己送出的贺卡的分配方式只有1种;所以,4个人都不拿自己送出的贺卡的分配方式共有教师小结:在巡视过程中,我观察许多同学解排列组合应用题的思考虑到本题给的数字小,“具体排”问题不难解决(二)有条限制的组合问题例3 已知集合A=1,2,3,4,5,6,7,8,9,求含有5个元素,且其中至少有两个是偶数的子集的个数通过分析讨论学生有以下解法解题思路是:从正面考虑分类,将含5个元素,且其中至少有两个是偶数的子集分为三类:类:师:很好!这两种解法都是正确的,直接法、间接法是两类很重要的思考方法和解题
40、方法生甲:我还有一种解法,现在看来是错误的,但不知错在哪?师:这更需要我们一起研究请说说你的列式和解题思路解题思路是:先由4个偶数选2个偶数,再由剩下的7个数(2个偶数,5个奇数)选3个数,组成含有5个元素的集合且满足至少有2师:错在哪?指出做题中的错误比做对一道题更有价值的一种选法,组成集合2,4,6,1,3我们再看另一种3,这是同一个集合,但在记数中却记了2次,这就重复了师:分析的很好!看来“具体排”的方法很有用重复的原因是分类不独立在使用加法原理时分类一定要遵循下列原则:设全集为I,把I分为A1,A2,An,n个子集,满足以下两条:A1,A2,A3,An任何两个的交集为空集;A1A2A3
41、An=I(三)排列组合混合问题例4 从6名男同学和4名女同学中,选出3名男同学和2名女同学分别承担A,B,C,D,E5项工作,一共有多少种分配方案师:如何设计,请说出你的解法问题在哪?师:这是一个排列组合混合问题,解题的关键是要合理分步一般题不过还可以挽救另解:把工作当元素,同学看作位子,第一步,从5种工作中任选3也可先给女同学分配工作,再给男同学分配工作,分配方案有:小结 排列组合混合问题,解题思路是:在分步时通常先组合后排列例5 方程x1+x2+x3+x4=7的正整数解的个数是_师:这个方程问题和排列组合有什么关系呢?求方程正整数解的个数,等式左边会有4
42、个未知数且次数是1次,右边是7(数字较小),问题可转化成把7分成4个正整数(允许取相同数字),x1,x2,x3,x4分别取这4个数字,请同学考虑如何列式生甲:将7拆成下面3组:分别将每组的4个数排在x1,x2,x3,x4这4个位置上,每个位师:这是用分类的方法处理问题,很好!还有其他的解法吗?解题思路是:将7分成7个1(1是最小的正整数单位),于是问题转化为将它们分成4组,这可以看成用3条竖线插7个1中间的6个用下图表示它的一种分割方法师:这是一道比较新颖的题目,解题中用到的都是基本知识和基本方法,但要通过分析、构想、设计,调动基本知识和基本方法解题第一种解法要有分类讨论处理问题的意识,第二种
43、解法是转化成熟悉的插空档问题(四)小结解排列组合应用问题,首先要抓典型问题如例1是排列常见的典型问题,例3是组合问题,例4是排列组合混合问题通过典型问题掌握基本方法,这是解排列组合应用问题首先要做到的排列组合应用题与实际是紧密相连的,但思考起来又比较抽象“具体排”是抽象转化为具体的桥梁,是解题的重要思考方法之一“具体排”可以帮助思考,可以找出重复、遗漏的原因有同学总结解排列组合应用题的方法是:“想透、排够不重不漏,”是很有道理的解排列组合应用题最重要的是,通过分析构想设计合理的解题方案,在这里抽象与具体、直接法与间接法、全面分类与合理分步等思维方法和解题策略得到广泛运用(五)作业1设有4个不同
44、的红球,6个不同的白球,每次取出4个球,取1个红球记2分,取1个白球记1分,使得总分不大于5分的取球方法数为
45、 2由数字1,2,3,4,5组成没有重复数字的五位数,其中小于50 000的偶数共有 A60个B48个C36个C24个3用0,1,2,3,4 排成无重复数字的五位数,要求奇数字相邻、偶数字也相邻,这样的五位数的个数是
46、0;
47、0;
48、0; A20B24C32D364从1,3,5,7,9中任取三个数字,从0,2,4,6,8中任取两个数字,组成没有重复数字的五位数共有
49、;
50、; A11040个B12 000个C8 160个D14 000个5设有编号为1,2,3,4,5的五个球和编号为1,2,3,4,5的五个盒子,现将这五个球投入这五个盒内,要求每个盒内投放一个球,并且恰好有两个球的编号与盒子的编号相同,则这样投放的方法总数为
51、; A20B30C60D12063个人坐在一排9个座位上,每人左、右两边都有空位子,这样的排法有_种7将5名学生分配到4个不同的科技小组、每组至少1人的分配方案有_种8从1,2,5,7,8,9中取四个不同的数,排成四位数,在这些四位数中从小到大排列,则1987年第_个作业答案或提示说明发挥典型题的作用,发展学生思维、排列组合应用问题是教学的重点也是难点,更是发展学生思维的好素材如何抓住重点突破难点,首先要发挥典型问题的作用,因此,例1、例3、例4都是典型题,通过典型题掌握基础知识、基本方法但仅仅这样是不够的,“数学教学是数学思维活动的教学”只有发展思维,分
52、析问题解决问题的能力才能提高,基础知识、基本方法才能在解决数学问题中用得上,用得好(第二讲)排列组合问题一、知识点:1分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,在第n类办法中有种不同的方法那么完成这件事共有 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,做第n步有种不同的方法,那么完成这件事有 种不同的方法 3排列的概念:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列4排列数的定义:从个不同
53、元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号表示5排列数公式:()6 阶乘:表示正整数1到的连乘积,叫做的阶乘规定7排列数的另一个计算公式:= 8 组合的概念:一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合9组合数的概念:从个不同元素中取出个元素的所有组合的个数,叫做从 个不同元素中取出个元素的组合数用符号表示10组合数公式:或11 组合数的性质1:规定:; 2:+ 二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步
54、计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:特殊优先法 对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有_个.(答案:30个)科学分类法 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_种.(答
55、案:350)插空法 解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是_.(答案:3600)捆绑法相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是_种.(答案:240)排除法 从总体中排除不符合条件的方法数,这是一种间接解题的方法.b、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合0,1,2,3,5,
56、7,11中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_条.(答案:30)三、讲解范例:例1 由数字、组成无重复数字的七位数(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解 (1):因为三个偶数、必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将、四个数字排好有种不同的排法;第二步将、三个数字“捆绑”在一起有 种不同的“捆绑”方法; 第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有种不同的“插入”方法根据乘法原理共有720种不同的
57、排法所以共有720个符合条件的七位数解(2):因为三个偶数、 互不相邻,所以要得到符合条件的七位数可以分为如下两步:第一步将、四个数字排好,有 种不同的排法;第二步将、分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有 种“插入”方法根据乘法原理共有1440种不同的排法所以共有1440个符合条件的七位数例 将、分成三组,共有多少种不同的分法?解:要将、分成三组,可以分为三类办法:()分法、()分法、()分法下面分别计算每一类的方法数:第一类()分法,这是一类整体不等分局部等分的问题,可以采用两种解法解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个
58、元素各作为一个组,有种不同的分法解法二:从六个元素中先取出一个元素作为一个组有 种选法,再从余下的五个元素中取出一个元素作为一个组有 种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以所以共有 15种不同的分组方法 第二类()分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有 种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有 种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有60种不同的分组方法 第三类()分法,这是一类整体“等分”的问题,首先从六
59、个不同元素中选取出两个不同元素作为一个组有 种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以 ,因此共有 15种不同的分组方法 根据加法原理,将、六个元素分成三组共有:15601590种不同的方法例 一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有种不同
60、的“插入”方法 根据乘法原理共有 7200种不同的坐法(第三讲)排列组合问题II一、相临问题整体捆绑法 例17名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有 种。捆绑法:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列.一般地: 个人站成一排,其中某 个人相邻,可用“捆绑”法解决,共有 种排法。练习:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法? 分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有 种排法,其中女生内部也有 种排法,根据乘法原理,共有 种不同的排法.二、不相临问题选空插入法 例2 7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为: 种 . 插入法:对于某两个元素或者几个元素要求不相邻的问题,可以用插入法.即先排好没有限制条件
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度外派工程师专项劳动合同精要3篇
- 2025年度特许经营权授予与行使合同3篇
- 海南外国语职业学院《交通信息系统》2023-2024学年第一学期期末试卷
- 二零二五年度旅游度假村合作协议范本
- 2025年度绿色蔬菜直销合作协议范本6篇
- 二零二五年度大型超市连锁加盟经营合同2篇
- 二零二五年度教育机构教师兼职工作合同2篇
- 课程设计批阅意见
- 二零二五年度季度销售奖杯采购与市场调研与竞争分析合同3篇
- 二零二五年度ROHS认证服务及产品保证合同模板2篇
- (人教版新目标)八年级英语上册全册各单元知识点期末总复习讲解教学课件
- 国家开放大学2023年7月期末统一试《11141工程经济与管理》试题及答案-开放本科
- 海康威视枪机摄像机检测报告.文档
- 体检中心组织架构
- 森林抚育投标方案
- 电工作业岗位风险告知卡
- 肿瘤科工作制度
- GB/T 4795-2023船用舱底水处理装置
- 特种设备作业人员考核申请表(样表)
- 融合心理健康教育的教学设计(八年级数学下册苏科版教案)
- 企业实际控制人的协议书
评论
0/150
提交评论