版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、学而思教育·学习改变命运 思考成就未来! 高考网高考数学最后冲刺必读题解析30讲(15)1江西五校联考20(本小题满分12分)已知,函数,(其中为自然对数的底数)(1)判断函数在区间上的单调性;(2)是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由20. (1)解:,令,得 若,则,在区间上单调递增. 若,当时,函数在区间上单调递减,当时,函数在区间上单调递增,若,则,函数在区间上单调递减. 6分(2)解:, 由(1)可知,当时,此时在区间上的最小值为,即当, 曲线在点处的切线与轴垂直等价于方程有实数解 而,即方程无实数解 故不存在,使曲线在点处的切
2、线与轴垂直12分21(本小题满分12分)已知线段,的中点为,动点满足(为正常数)(1)建立适当的直角坐标系,求动点所在的曲线方程;(2)若,动点满足,且,试求面积的最大值和最小值 21. (1)以为圆心,所在直线为轴建立平面直角坐标系 若,即,动点所在的曲线不存在;若,即,动点所在的曲线方程为; 若,即,动点所在的曲线方程为. 4分(2)当时,其曲线方程为椭圆 由条件知两点均在椭圆上,且设,的斜率为,则的方程为,的方程为 解方程组得, 同理可求得, 面积= 8分令则令 所以,即 当时,可求得,故, 故的最小值为,最大值为1. 12分(2)另解:令,则解得所以,而因此,即最大值是1,最小值是.2
3、2(本小题满分12分)函数的反函数为,数列和满足:,函数的图象在点处的切线在轴上的截距为. (1)求数列的通项公式;(2)若数列的项中仅最小,求的取值范围;(3)令函数,.数列满足:,且,(其中).证明:.22. 解:(1)令 解得 由 解得 函数的反函数则 得 是以2为首项,1为公差的等差数列,故4分(2) 在点处的切线方程为令得仅当时取得最小值, 的取值范围为8分(3) 所以 又因 则 显然10分 12分 .14分2. 曲靖一中20. () ()21. () 和 ()22.(本小题满分14分)已知函数且()求与的关系式; ()若在定义域内为单调函数,求的取值范围;()设,若在上至少存在一点
4、,使得成立,求的取值范围。22. () () ()2.山西一模21.函数和为实常数)是奇函数.(1)求实数的值和函数的图象与轴的交点坐标.(2)设,求的最大值.21.(1) m=0,且时交点为(0,0); 时交点为(,0)、(-,0)(2)22.如图,设抛物线的准线与轴交于,焦点为.以,为焦点,离心率的椭圆与抛物线在轴上方的交点为,延长交抛物线于点,是抛物线上一动点,且在与之间运动.(1)当时,求椭圆的方程;(2)当的边长恰好是三个连续的自然数时,求面积的最大值.22.(1);(2)m=3, 面积的最大值是权所有:高考资源网(www.k s 5 )3浙江十校模一21(本小题满分14分)已知抛物
5、线 (1)设是C1的任意两条互相垂直的切线,并设,证明:点M的纵坐标为定值; (2)在C1上是否存在点P,使得C1在点P处切线与C2相交于两点A、B,且AB的中垂线恰为C1的切线?若存在,求出点P的坐标;若不存在,说明理由。21(本小题满分14分)解:(1),设切点分别为则即 方程为 由即所以,即点M的纵坐标为定值 (2)设,则C1在点P处切线方程为:代入方程得即设则 由(1)知从而,即进而得解得,且满足所以这样点P存在,其坐标为 14分22(本小题满分16分)已知函数 (1)若是区间(0,1)上单调函数,求的取值范围; (2)若,试求的取值范围。22(本小题满分16分)解:(1)在(0,1)上单调(这是城“=”只对个别成立)从而 7分 令则当时恒成立,上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广东省华附等四校高三语文1月联考试卷附答案解析
- 课题申报参考:家庭结构转变视域下城市青少年体育参与的家庭代际支持网络构建研究
- 2025版房地产营销投标文件招标合同样本3篇
- 2025版彩礼退还与婚姻解除补偿协议书范本3篇
- 2025年度个人消费借款合同范本全新修订版4篇
- 2025年通辽从业资格证应用能力考些啥
- 电梯安装工程2025年度环保要求合同3篇
- 二零二五年度城市共享车牌租赁经营许可合同4篇
- 二零二五版煤矿井巷工程地质灾害防治与监测承包合同范本4篇
- 2025年度门窗安装施工与绿色施工管理合同4篇
- 电缆挤塑操作手册
- 浙江宁波鄞州区市级名校2025届中考生物全真模拟试卷含解析
- 2024-2025学年广东省深圳市南山区监测数学三年级第一学期期末学业水平测试试题含解析
- IATF16949基础知识培训教材
- 【MOOC】大学生创新创业知能训练与指导-西北农林科技大学 中国大学慕课MOOC答案
- 劳务派遣公司员工考核方案
- 基础生态学-7种内种间关系
- 2024年光伏农田出租合同范本
- 《阻燃材料与技术》课件 第3讲 阻燃基本理论
- 2024-2030年中国黄鳝市市场供需现状与营销渠道分析报告
- 新人教版九年级化学第三单元复习课件
评论
0/150
提交评论