111集合的含义与表示_第1页
111集合的含义与表示_第2页
111集合的含义与表示_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1.1.1集合的含义与表示教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系 2、集合的表示法教学过程:一、 集合的概念实例引入: 120以内的所有质数; 我国从19912003的13年内所发射的所有人造卫星; 金星汽车厂2003年生产的所有汽车; 2004年1月1日之前与我国建立外交关系的所有国家; 所有的正方形; 黄图盛中学2004年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、 集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体

2、对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写 练习:判断下列各组对象能否构成一个集合 2,3,4 (2,3),(3,4) 三角形 2,4,6,8, 1,2,(1,2),1,2 我国的小河流 方程x2+4=0的所有实数解 好心的人 著名的数学家 方程x2+2x+1=0的解三 、 集合相等 构成两个集合的元素一样,就称这两个集合相等四、 集合元素与集合

3、的关系集合元素与集合的关系用“属于”和“不属于”表示:(1)如果a是集合A的元素,就说a属于A,记作aA(2)如果a不是集合A的元素,就说a不属于A,记作aA五、常用数集及其记法 非负整数集(或自然数集),记作N; 除0的非负整数集,也称正整数集,记作N*或N+; 整数集,记作Z; 有理数集,记作Q; 实数集,记作R.练习:(1)已知集合M=a,b,c中的三个元素可构成某一三角形的三条边,那么此三角形一定不是( ) A直角三角形 B 锐角三角形 C钝角三角形 D等腰三角形(2)说出集合1,2与集合x=1,y=2的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例 1、 用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由120以内的所有质数组成。例 2、 试分别用列举法和描述法表示下列集合:(1)由大于10小于20的的所有整数组成的集合;(2)方程x2-2=2的所有实数根组成的集合.注意:(1)描述法表示集合应注意集合的代表元素(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论