隧道太阳能照明及控制系统设计_第1页
隧道太阳能照明及控制系统设计_第2页
隧道太阳能照明及控制系统设计_第3页
隧道太阳能照明及控制系统设计_第4页
隧道太阳能照明及控制系统设计_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、隧道太阳能照明及控制系统设计摘要我国西部山区公路隧道集中区远离城市, 传统交流供电方式的成本高、 难维护、 难检修 等问题十分突出。结合国家节能减排,大力发展新能源的号召,本课题中设计了一套基于单 片机、光伏电源和大功率照明 LED 的直流照明系统。本设计选取了适当的系统组件,分析并 详细汁算了各组件的参数要求。这样,在节省成本的同时还具有环保性能好、照明质量高得 的特点。关键词:公路隧道,太阳能, LED 照明Tunnel lighting and control system design.01 引言1 ? 1 课题背景山于我国山地众多,幅员辽阔,为了缩短公路里程,提高运输效益,节省用地和

2、保持生态环境, 公路建设中越来越重视隧道建设。 公路隧道具有其功能特殊性, 确定了其建设复杂性。 照明系统是隧道机电工程中最重要的设施之一,也是整个隧道机电工程总投资最大的一个系 统。公路隧道照明,不论口天还是夜间都很重要,并且口天照明问题比夜间更复朵。为了满足公路隧道运行要求,隧道灯具应适应公路隧道使用特点,节约能源,提高照明效果,保证行 车安全性、舒适性,能有效地进行营运管理。随着我国公路建设的快速延伸,地形复杂、人口稀少地区电力资源贫乏,电力成本巨大的问题日益突出,尤其是公路隧道照明系统的供电问题更趋严重。依据国家规范 400 米以上 的公路隧道需设照明设施,因此开发一种既可降低,程造价

3、,乂能降低运营管理成本的适应此发展需求的公路隧道太阳能照明系统就已十分迫切。为了能够利用丰富太阳能资源及有效 的太阳能技术,为西部及边远地区公路隧道提供一种有效的照明及供电手段,保障公路隧道运营安全,提高公路隧道交通安全可靠性和有效性,本课题研究的主要 LI 的是设计制造能耗低而适宜公路隧道的照明系统及研究与其匹配的太阳能供电系统。Led 照明技术具有能效高、寿命长、绿色环保的特点,在实用性、可靠性、经济性和相 关技术标准上存在问题也逐步得到解决,系统地用于环境节能、模式节能和控制节能中,逐 步显示出优势。理论分析和对比试验表明, LED 灯能耗较高压钠灯降低一半以上。这些为山 区高速公路隧道

4、大范围使用 LED 照明技术创造了有利条件。1.2 国内外技术现状1.2.1 公路隧道照明研究现状我国公路隧道照明灯具研制起步较晚,基础较差,特别是针对隧道照明灯具要求和特性 方面的深入研究极其缺乏,设计、制造的灯具与国夕卜存在较大差距。近年来,虽然复旦大学、 上海灯具研究所、 重庆交通科研设计院、 浙江交通规划设汁院等少数单位拥有研究条件和一定试验设备,重视隧道灯具研究外,大部分灯具厂家没有公路隧道灯具研究条件和试验设备,自主开发隧道灯具能力差。 国内隧道灯具厂多为小厂或主要从事其他领域照明器材生产, 技术、 工艺和装备落后,生产分散,专业化水平低,效益不高。2004 年交通部提出了公路隧道

5、太阳能照明系统研究并在西部发展科技项 LI 中立项, 要求国内企业研究以降低照明系统功耗为支撑,满足太阳能供电需求的基础上改进灯具。公路隧道灯具的开发方面缺乏足够认识和必要投入,与国外照明电器匚业生产集中度相比,远未达到应有的经济规模;另一方面国内使用的隧道灯具大多存在光带窄,配光质量不够, 能耗高,质量稳定 性差,寿命短,档次不高的问题,直接导致公路隧道照明效果不佳,不 能满足公路隧道照明要 求,严逼影响行车安全性。隧道照明的光源应满足隧道特定环境下的 光效、光通量、寿命、光色 和显色性要求:同时还能保证在汽车排放形成的烟雾中有良好的 能见度。隧道照明的效果必须依 靠可靠的光源来实现。公路隧

6、道一旦投入使用,正常状态下 照明系统儿乎处于长期点亮状态,因 此选择一种适宜的光源,是隧道照明的重要环节。 公路隧道照明通常依据现行规范把隧道分为入 口段、过渡段、中间段和出口段设计,其中过渡段有两个,分别设讣在中间段前后。各段的长度和照度从全年行车安全要求出发,对洞内 最大照度的设计是以全年洞外最大亮度和最高行车时速 来确定隧道内各段的灯具功率和灯 具分布密度。实现照明自动控制的也是非常有限的控制,通常 因线路布线回路的限制,只能 做到 2? 3 级人工或自动控制,对于如天气、车速、车流量等参数 只是在设计阶段给予以最大值考虑,最终各段照明的长度和照度也始终是处于最大值状态。对于天气、车速、

7、车流量等时变参数无法从宏观上对整个隧道的照明系统进行自适应方式的调节控制。因此,从这一 点上讲,口前这利传统设计与使用的隧道照明系统存在着大量电能的浪费问 题。1.2.2 LED 照明现状( 1)国外研究现状近年来, 随着国外 LED 技术研究水平的不断提高, 相关照明研究也逐步深入。 在 LED 技术 研 究方面,山于国外政府在节能环保的巨大压力下,采取相关政策豉励和推广LED照明产品应用。美、日、欧盟等发达国家皆山政府成立专项,编列预算与计划推行:日本的“ 21世纪光照明”计划从 1998年? 2002年,耗费 50 亿日元推行半导体照明:美国的“国家半导体照明 计划”从 2000年 ?

8、2010 年,投资 5 亿美元;欧盟的“彩虹计划”,在2000 年 7 月启动,通过 欧共体资助推广应用白光 LED 。而对 LED 相关产品,奥地利照明设讣公司采用 14000 只口光和彩色LED 混合照明整个房间,光照水平达到 600? YOOLux, 足够一普通办公室照明。用计算机计算白光、蓝光、蓝/ 绿光、 琥珀和红光二极管混合效果,以获得 2500? 3000K 暖色温,其显色指数非常接近最好的荧光灯。2005 年,美国、日本、欧洲八大集团公司共同组成的固态照明系统及科技联盟ASSIST 制定 7“普通照明用 LED 寿命”技术标准,规定了普通LED 寿命的定义、器件和系统测量方法。

9、2005 年 12 月日本出台改善与提高能源使用的促进税法,明确规定企业或机构使用LED 照 明取代口炽灯照明,可获得投资额130%超额折旧,或者是投资额7%的税率减免。欧盟2006 年 7 月开始实施 RO 出法案(全称是在电子电气设备中禁止使用某些有害物质指令),限制 含汞的荧光灯管的使用;美国加州立法者提议到 2012 年实行口炽灯禁止令; 2007 年 2 月澳大 利亚政府宣布将逐步淘汰白炽灯 o( 2)国内研究现状国内LED仅处于照明应用的初级阶段,为使 LED真正进入照明领域,产业界还要做很多 作。 U 前在国家“ 863”计划新材料领域资助下,LED 产业取得了重大的进展,氮化稼

10、基半 导体材料和器件实现产业化。 一些科研院所, 如中国科学院物理所和长春光机与物理所、 北 京大学、 北京有色金属研究院、 石家庄十三所等单位也相继开展了这方面的研究工作。 U 前 已取得了可喜的进步,正在缩短与国际先进水平的差距。当前市场上的口光 LED 大都是国内 LED 厂家采用进口芯片和荧光粉自行封装的。由于技术力量和自主开发能力薄弱,蓝光芯片 的选用和白光LED 的性能受到一定限制和影响。山于技术、 工艺、 生产成本等因素的影响, 忖前应用最多的是光转换型, 其次是多色组合型。以发展的眼光来看,多量子阱型和“光子再循环”当是未来的发展趋势。但山于技术 限制,生长 不同结构的量子阱相

11、对困难得多,在短时间内还不能产业化。在我国 LED 起步于二十世纪七十年代,至今已三十多年。全国约有100 多家企业,其中 95%厂家都从事后道封装生产,所需管芯儿乎全部来自台湾地区或从国外进口。通过儿个 五年计划”的技术改造、技术攻关、引进国外先进设备和部分关键技术,使我国 LED 的 生产技术已向前跨进 了一步。我国台湾地区是世界LED 及管芯的主要产地,年产 LED 约 40 亿只,产品品种规格齐全,性能达到或接近世界先进水平,所生产的管芯也大量出口日本等 国。口前,一方面我国是照明灯 具产业的大国,对于半导体LED 产业链经多年发展已相对完 善,具备了一定基础,另一方面政府和业界适当协

12、调,发展半导体LED 照明事业大有可为。1. 2. 3 光伏发电研究现状我国光伏供电系统研究主要包括太阳能电池、逆变器、控制器等相关开发。近年来, 太阳能电池研究主要集中于太阳能电池用材料研究和国产化,其研究机构主要在大学和研究 所,如北京市太阳能研究所、 信息产业部笫18 研究所、 上海 811 研究所、 中科院半导体所、 上海交通大学、四川大学等等。自 2005 年以后, 光伏产业快速发展, 质量和产量提高迅速, 2008 年光伏组件产量已居 世界第一, 随着硅材料解决和薄膜太阳电池的发展, 价格迅速下降, 为大规模应用创造了有利条件。 国内企业研究和开发能力迅速增强,已有多家单独或以产学

13、研结合方式建立了研发 中心叭太阳能电池是光伏发电系统的_个重要组成部分,其封装用材料EVA 膜及 PVF 复合膜 等的改性、丝网印刷用浆料国产化等研制已经开展。随着太阳能电池的逐步成熟,与之配套 的储能产品 - 蓄电池的研发也渐渐引起重视。山于国内 LI 前很少开展这方面工作,导致了太 阳能和风能发电系统专用蓄电池存在一定问题,尚须进一步研制开发。光伏供电系统建立后,控制器好坏将影响系统功效发挥是否充分,尤其国内与国际的 技术水平在小型户用电源控制器上尚有一定差距,主要原因并非技术能力,而是户用电源集 成商迫于市场竞争的压力,不肯选用高档控制器。如上可知,我国光伏供电系统尚需不断改进,以提高普

14、及应用能力,满足无供电条件或条件不好时照明系统应用。在此背景下,国家科技部通过国家科技攻关讣划、 863 II- 划九 973 计戈IJ 等支持较大的光伏研究课题,以支持光伏产业发展。2隧道照明设计课题“隧道太阳能照明及控制系统设计”需要一个具体的“对象隧道”才 能进行详细的研究和计算。所以本课题假定“对象隧道”设置在西安地区,为 双道单向交通,流量:7000K2400辆/h,全长1000m,隧道宽8m,高12m。灯具安 装高度5. 3m,设计速度为60km/ho依照公路隧道通风照明设计规范,隧道照明系统包括IL八(S)(屯P8SL 接近段I入口段久h 入口段照明; 过渡段照明; 中间段照明;

15、 出口段照明; 接近段减光设施;(6) 洞外引道照明; 应急照明。隧道照明系统的各照明段如图所示()中间段图2-1个照明段亮度与长度P洞口: S近段起点:A应点;d一应距离;L20 (S)洞外亮度:L20 (A)适 应点亮度:Lth一入口段亮度;Lthl. Lth2. Lth3 过渡段亮度:Lin 中间段亮度:Dtrl. Dtr2.Dtr3 过渡段1、2、3分段长度2. 1入口段照明隧道照明不同于普通的道路照明,隧道一旦建成通车,就需要24小时的照明,而且口 天的照明远比夜间的复杂。口天, 当人从光线较强的地方进入到光线很暗的地方时,人的眼 睛需要一段时间来适应,这段时间内人们很难看清楚黑暗中

16、的物体,这被称为“黑洞效应”。 口天司机从隧道外驾车进入隧道内部时也是如此, 若不增加照明设施,很容易酿成交通事故。 为消除或削弱“黑洞效应”带来的影响,隧道入口段的照明克度在白天应半根据隧道外的亮度适当加强。入口段亮度计算公式:Lth=k*L20 (S)式中Lth 入口段亮度(cd./m2);k入口段亮度折减系数,可按表2-1取值;L20 洞外壳度(cd/m2)设计交通量N (辆Zh)k计算行车速座V, (km/h)双车血单向交通双车道i(向交通100806040孑 24000.0450.0350.0220.012180 hn/h400mSOOm图2-2-1过渡段照明曲线该曲线可由阶梯曲线代

17、替。从一个阶梯到另个阶梯允许的最大辉度比率为3o最后一个阶梯的辉度不应大于中间段亮度的2倍。已完成从入口段到中间段的国度。过渡段1I1TR1. TR2、TR3三个照明段组成,与之对应的连读取值如表2-2-1照明段TR2TR3庇度,20.1ftr3 f 0 ? 035 匚小表2-2-1过渡段克度过渡段长度按表2-2-2取值计算行乍速境5 (km/h)(m)(m)% (m)计算行车速度班(km/h)5 (m)Db (m)5 (m)100106111167&04467100728913340264467表2-2-2过渡段长度Dtr查表计?算可得过渡段 TRI : Ltrl 二 0. 3*Lth 二

18、21.6cd/m2 ; Dtr 1 二 44m:TR2 : Ltr2 二 0. l*Lth=7. 2cd/m2 : Dtr2=67m ;TR3 : Ltr3=0. 035*Lth 二 2. 52cd/m2 : Dtr3 二 100m。2. 3中间段照明中间段壳度按表2-3-1 Wo计算行车速 度(kmAh)匕洽(cd/rn2)双车道单向交通N2400辆/h双车道双向交通N1300辆/h双车道单向交通a700辆Zh双车道双向交通NW360辆/h1009.04804,52602.51.5401.51.5表2-3-1中间段亮度Lin乂因为半双车道单向交通 700辆/hN2400辆/h,双向交通360

19、辆/hN1300辆/h且通过隧 道的 行车时间超过135s时,可按表2-3-1的80%取值,所以中间段壳度 Lin二2. 5*0. 8二2cd/m22.4由口段照明当人们从光线弱的地方渐入光线强的地方时,同样需要一段时间来适应,但是人适应强光线的时间要比适应暗光线所需的时间短得多。因此在从隧道内部离开隧道时需要设置由口段的照明设施,但由口段不必像过渡段那样分为三个区域。在单向交通隧道中,应设置由口段照明;由口段长度宜取60m,壳度去中间段亮度的 5倍及2*5=10cd/m2o2. 3灯具选取LT前,隧道照明可采用的灯具有高压钠灯、荧光灯、高频无极灯、LED灯等。其中,高 压钠灯和荧光灯基于气体

20、放电,无极灯基于气体放电和高频电磁感应的结合,LED ( Light EmittingDiode)即半导体发光二极管基于注入式电致发光。高压钠灯是我国LT前高速公 路隧道照明主要采用的灯具。但新型 LED灯具有高效节能、使用寿命长、维护方便、工作电压范围宽、工作温度低、绿色环保等显着优点,是口前高速公路隧道照明强有力的竞争产品。国际上单芯片大功率口光 LED在技术和标准上发展较为成熟,以其为光源的灯具是市场上的 流产品参数名称高压钠灯LED灯光源发光效率光源光通ft发光色温发光显色指数光衰指标功率因索电源效率灯具效率利用系数养护系数灯具有效发光效率工作电压环境温度启动特性发热量光源使用寿命灯K

21、使用寿命防护等级防触电保护呼吸过滤系统1201m/W2000 2500K23 Ra20(X)0h 光衰 0. 8 0. 70. 4-0.50. 6 ().740 5()lm/W5min大2(X)(X)h 1001m (单芯片 LED)2600 ? 1(X)(X)K70 80Ra5(X)(X)h 光衰 0. 9 0. 85().8 ().90. 8560 ? 8()lm/WAC 17,? 265 V-25十50兀 50(X)C)h 20(X)0hIP65I类不需要表2-3-1灯具参数对比本课题中,应用太阳能发电技术,为保护环境节约成本采用大功率LED隧道灯作为照明 灯具。灯具的选取需要根据路面的

22、平均照度及壳度计算来确定。1)利用系数曲线法汁算路面品均照度:Eav= n g*M*N/W*S式中: N 灯具布置系数,对称布置时取2,交错及中线布置时取1 (本课题中采用3m);Q 利 用系数取 0.4;W 一道路面宽度(8m ):S一灯具间距采用3mM 维护系数取0. 7 ;一一单个灯组光通量,本课题采用的灯组光通量为dOOOlmo代入上式: Eav 二 0. 4*4000*0. 7*1/8*3=46. 671x根据公路隧道通风照明设计规范中所提供的算例,隧道内平均照度应达到 401x 以 上,可见该方案能够满足设计要求。( 2)隧道内壳度计算Lpi 二 Irc/H2*r ( 0, y )

23、Lpi一灯具i在计算点p产生的亮度(cd/m2);r (P, Y)简化壳度系数,按附录表取值:山于在克度讣算中需要用到的实测值Ire在理论设讣及汁算时无法获得,需要对灯组进行光强分布的测量实验。在本课题中以路面平均照度为准。2.4 本章小结本章依照国家颁布的公路隧道通风照明设计规范对西安地区双车道单向交通, 车流量为700N2400 Wh,全长1000m,隧道宽8m,高12m,灯具安装高 度5. 3m,设计速度为 60km/h 的公路隧道各区段照明做出了详细的分析和介 绍。结果如表2-4 。亮度(cd/吗m2)长度(m)灯具数疑(八)入口段725619过渡段121.64415过渡段27.267

24、22过渡段32.510033中间段2673225出口段106020灯具采用交错排布,间隔3m,共334盏表2-43蓄电池选取与计算3. 1蓄电先择本设计中为节约成本采用独立运行的光伏发电系统,在独立光伏系统中,必须配备储能蓄电池,将太阳电池产生的电量收集并储存,在需要对负载供电时调控蓄电池的放电,还需要对负载的供电进行控制,所以蓄电池成为了独立光伏系统中的重要部件。从节约成本、保护环境、可靠性高的角度由发,采用 VRLA (法空是密封铅酸蓄电池一一valveregulated lead acid battery )o VRLA电池是全密封的,不会漏酸,而且在充放电时不会像老式铅酸蓄电池那样会有

25、酸雾放生来而腐蚀设备,污染环境。3.2蓄电池容量计算蓄电池的储能作用对保证连续供电十分重要。在一年当中,光伏阵列的发电量在各个月份有很大的差别,光伏阵列发电量不能满足用电需求的月份,要幕蓄电池的电能给予补足;在超过用电需求的月份,幕蓄电池将多余的电能储存起来。同样,连续阴雨天期间的负载用电量也必须从蓄电池取得。 蓄电池的容量计算公式为Be 二 KQLNLTO/Cc (Ah)式中:K 安全系数,取1. T1.4,本设计?中取1.2; QL 负载日平均耗电量,即工 作电流 乘以日工作小时数:NL 最长连续阴雨天数,本设计?中取15天;TO 温度修正 系数,一般 在0C以上取1,-10 C以上取1.

26、1,-10 C以下取1.2; Cc 蓄电池放电深度,取0.75 o山于白天隧道内的照明等级需要根据隧道外的光线的强度来确定,而隧道外的壳度变化需要进行实测,因此在进行蓄电池容量的计算时负载日平均耗电量无法准确讣算由来。本设计中认为从早上的9点到下午5点的8个小时中洞外亮度按照最大情况,此时入口段的灯具为额定工作状态。早上7点到9点和下午5点到7点这4个小时中,隧道外壳度按最大壳度的一半来II-, III于LED的壳度与电流成正比,所以这段时间内入口段灯具电流以额定值的一半计算。其余的12个小时按照夜间照明计算。 按照上述时间 段顺序,个照 明区段 LED 灯具的电流及日平局耗电量如 下表3-2-1所示。91779 &171918为日平均耗电M入口段210. 06393. 6过渡段10.60.30. 06100.8过渡段20.20. 10. 0659.84过渡段30. 070.060. 0650.16中间段0. 060. 060. 06324出口段0.270. 140. 066S将表中数据带入公式:Bc=l. 2* (393. 6+100. 8+59. 84+50.16+324+68) *15*1*0. 75=13451.4 (Ah)4 光伏阵列设计4. 1 太阳能组件串联数M将光伏电池组件按一定数目串联起来,就可以获得所需要的工作电压。另外,光伏 电池方阵在对蓄电

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论