版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、变式教学在小学数学教学中的作用讲解变式教学在小学数学教学中的作用在小学数学教学中,经常要用到变式:变式就是在教学中,从不同角度组织感性材料,不断地变换事物的非本质性属性,而突出本质属性,并使有关的本质属性相互联结”,形成主心骨”,让学生领略万变不离其宗”的奥妙。下面谈谈我在教学中的一些尝试。一、变式在概念教学中的作用:小学数学概念的一个基本特征是抽象性,而小学生的思维又从具体形象思维向抽象逻辑思维过渡,在教学中恰当地运用变式,有利于对概念的理解和提升。如:教学认识分数”时,有位老师是这样设计的;教师创设了猴妈妈分苹果的情境:猴妈妈给四只小猴分苹果,她带来两盒苹果,小猴打开一盒,师问:怎样分才能
2、公平?接着分第二盒,师还是问;要分得公平,怎样分?然后,教师追问;为什么苹果数量不一样,都用四分之一来表示?学生说:把一个东西平均分成四份,取其中的一份就用四分之一来表示。接着老师又出示12个苹果,你能从图上找出它的四分之一吗?在这个片断中,为了使学生能深刻认识四分之一,老师变换非果,12个苹果的四分之一,突出不管分多少个苹果,只要把它们平均分成四份,本质性属性,让学生分4个苹果,其中的一份就是四分之一表示。在几何初步知识的概念教学中,如果仅以某种位置的图形引导学生理解,于小学生思维的具体性和感性经验较狭窄,会导致对知识理解的片面性。因此,在几何知识的教学中教师应善于应用变式,将各种不同位置的
3、图形呈现给学生,帮助学生更透彻地理解知识。有位教师教学认识线段一课时,为了给学生巩固对线段知识的认识,设计了一个出手指”的游戏,将各种不同的图形展示给学生,请学生运用本节课所学的知识进行判断。当大屏幕上出现这样一个图形时:一个女孩子判断它是错的,问她:你觉得它错在哪里呢?那个女孩子说:它是斜的,而线段应该是平的。”这时的教师意识到呈现给学生的图形过于单一,因此学生已经在头脑中给线段建立了一个固定的模式。于是教师带领学生紧紧围绕线段”的特点加以判断,并利用手中的毛线进行演示,试图引导学生走出这个误区,建立起正确、全面的认识。又如;教学三角形的高”的概念时,变式的练习更为重要。因为三角形按角的大小
4、可以分为三类,每一类的高的位置并不完全相同,有的甚至差异很大。所以三角形的高是学生学习的难点,学生往往看到倾斜的线段就不认得是高,常常画高时总要垂直水平方向,课堂上呈现给学生的高的位置应是不同的,使学生对高”的概念有本质的认识。有一位老师是这样设计的:让学生凭着自学课本的初步感知说一说、指一指三角形的高,然后课件出示标准的三角形的高。紧接着再出现将标准的高的三角形进行90度旋转、135度旋转、旋转、175度旋转、180度旋转150度360度旋转。每旋转一点都问:现在还是不是三角形的高?是不是还是从顶点向对边作垂线,在这些变式高的出现和观察之中,学生在变化中看到了不变,即高的本质:从一个顶点到它
5、的对边作垂线,线的方向在变,垂直于底没有变数学课程标准中指出:小学生的空间观念主要表现在能实物的形状想象出几何图形,几何图形想象出实物的形状,进行几何体与其三视图、展开图之间的转化而要培养学生空间想象能力的第一步就是让学生能认识各种位置上的图形,作为教师的我们在备课中应站在学生的角度进行思考,巧妙变式,多角度、全方位的带领学生理解知识二、变式在几何教学中的作用:在几何教学中,蕴涵着许多有利于变式的信息,特别是图形的周长、面积和体积等,教材的编写中明显地体现了转化”思想,转化思想其实就是对形体的变式,通过形体的方位、形状等的变式教学,可帮助学生打通”各外表开头不同、实质有联系的形体的关节”,有效
6、运用变式教学提高教学的实效性。如;通过等积变形”加强形体的变式与联结,几何形体的等积变形在平面图形的教学中的作用,在教学中可以通过几体形体间的变式,让学生感悟形在变”的思想。如学习三角形面积”时,可以引导学生在一组平行线之间画出面积相等但形状不同的三角形,而学了平行四边形的面积”后,则可以在两者之间建立联系,如何在一组平行线间画出面积相等的三角形和平行四边形?从而引导学生探究高”相等的情况下,怎样变底”,才能使它们的面积相等。如:通过讹归”思想加强形体间的变式,从教材的编排体系上看,先安排学习长方形的面积,而此后的正方形、三角形、平行四边形、梯形甚至圆形面积的学习,都是通过割补、平移、旋转等方
7、法转化成已学过的图形,即运用讹归”的思想进行学习的。这样学生在割补、平移、旋转的同时,不仅实现了新旧知识的迁移,学会了面积的计算方法,更重要的是学会了数学思想方法的运用,理解了数学知识之间的相互联结的趣味和奥妙,给学生的轻松学习奠定了学习基础。三、变式在练习设计中的作用:数学课堂练习是一堂数学课的重要组成部分,是进一步深入理解知识、掌握技能技巧、培养积极的情感和态度、促进学生深层次发展的有效途径;教师应当成为有经验的舵手”,做好变式练习设计,调动学生的思维积极性,提高教学效果。例如在讲商不变的性质”这一课时,可以设计如下的变式题,逐步巩固得出的商不变性质的概念。第一层次:各题的商是几?已知40
8、也0=2,那么工?第二层次:在匚里填上适当的数字,在C填上“斌公”已知24由=4,那么4,4。第三层次:在口里填上适当的数字。已知30*=5,那么5。以上一系列的变式题易到难,一环扣一环,不超过当时学生的认识能力,坡度适宜,既巩固了所学知识,又进行了发散性思维训练。例如在学过角的度量方法后,可出示这样的两个变式图形让学生巩固量角的方法及技巧。第题主要是让学生学会正确旋转量角器去量角的技巧。第题主要是让学生掌握要把角的一边延长后才能在量角器上读出刻度的方法,并且这一题中有钝角、锐角、直角。这样的变式题就能起到画龙点睛、举一反三的作用。例如:在教学积的变化规律”时,可以设计以下变式练习,让逐步掌握
9、积的变化规律。第一层次:各题的积是多少?6X2=12,那么620=6X200=积是多少?怎么变化的?第二层次:1245=540,那么45=45=积是多少?为什么?第三层次:1245=540,那么=积是多少?根据什么?第四层次:1245=540,那么x=x=积是多少?为什么?总之,不同的知识需要不同的变式方法训练,但要点只有一个,那就是本质不变,变化非本质特征,使知识在不同情景下应用,以促进迁移。宗旨也只有一个,就是让学生形成技能,发展能力。著名的数学教育家波利亚曾形象的指出:好问题同某种蘑菇有些相像,它们都成堆地生长,找到一个以后,你应当在周围找一找,很可能附近就有好几个。”数学教学中开展变式
10、教学,有利于学生对实际问题的动态处理,克服思维的心理定势,实现创新教育。在小学数学教学中,经常要用到反例:反例,就是故意变换事物的本质属性.使之质变为其他知识,在引导思辩中,从反面突出事物的本质属性的否定例证。这样做有助于学生从正反两方面辩证地思考问题,促进学生全面、深刻地认识事物的内涵与外延,培养学生思维的深度。一、深化概念的常用手段小学生的感知具有范围窄小。不精确等特点,很难同时注意几件事物,常会出现丢三落四”的现象,所以对一个有丰富内涵的概念来说,学生在感知过程中,可能只会抓住感知对象的部分本质特征.而丢掉另外一部分本质特征.形成错误的概念。例如,学习等腰直角三角形”知识时,等腰直角三角
11、形的本质属性较多,内涵丰富,等腰“直角”三角形”三方面组成+一些学生学习后,不是丢了等腰,就是忘了直角,有的甚至丢了三角形三条边首尾相连”的性质。此时要举反例,如直角”常为学生忽视,错把等腰三角形判定为等腰直角三角形,这时老师应出示等腰直角三角形的正确图形,引导学生在比较中再次认识直角,否定错误的认识。另外等腰”首尾相连”等。性质亦可如是强调、因此,当学生对内涵丰富的知识感知不全时可通过数学反例,凹显出所学知识中易为学生忽视的本质属性.促进学生对所学知识的全面认识,深刻理解。二、理解新知的有力工具数学是一门严密的科学,是知识点编织而成的稳固的网络系统,当一个新的知识点纳入原有知识结构时,学生常
12、凭直观或想当然去理解它,这样往往会失之毫厘,谬以千里”。小学数学教学中.不仅要运用正确的例子深刻阐明新的知识,而且要运用恰当的反例,通过新、旧知识的对比,突出新知识的特点,从而真正理解新知识的本质。例如,学生在学过整除之后,学习有余数除法,两者相比,对余数的处理以及引起的试商方法是教与学的难点和特点,为突出余数比除数小”的特点,教学中出示如下反例:引导学生找错、议错时,强化对有余数的意义的理解。三、防错纠错的锐利武器学生在解题中经常出现差错且不易发现和纠正-对此,可以引入反例,让学生学习、讨论,帮助他们发现问题、分析错误原因.找出正确的解题方法。例如,在学生解答工程问题时,可出示一反例:一项工
13、作,甲独做1/2小时完成,乙独做1/3小时完成,如果甲乙两人合作。几小时可以完成?学生受思维定式的消极影响列出了了(1/2+1/3)的错误算式,这时教师可组织学生讨沦思考、辨别,分析错在哪里,错误的原因是什么?使学生识别题中的假象。有的学生认为:1人独做只需1/2小时或1/3小时,两人合做,难道用的时间还会比1人做的时间长吗?不可能。有的学生说:工作量三I:作时间之和二合作的工作时间”,从道理上讲不通。经过学生集体讨论,最后都归结到工作总量可作效率之和=合作时间”这个关系式上来,认为甲、乙各自的工效不是1/2和1/3,而是1T/2和1T/3;,正确地掌握了工程问题的数量关系。四、否定命题的有效
14、方法数学中有些问题,若从正面角度讲,学生会感到模模糊糊、理解不透,甚至还会产生错误的判断。为了提高学生认识.判断的能力,教学时应突出反例的作用,来帮助学生掌握否定命题的方法。例如,学生对命题两个质数一定互质”,往往肯定为正确的,究其原因是受两个不同的质数一定互质”的影响,以为两个质数”理所当然是指两个不同的质数”,而以为两个相同质数”就应称作一个质数”,这种以自己的理解为准的思想方法是不对的;对此,教师以5”为例,说明这是两个质数相加”,而且是两个相同的质数相加”:这种反例,既能说明错误,又能促进学生思维能力的发展。五、强调条件的得力措施学生在学习公式、性质,法则时,常常只注重记忆结论.不注意
15、公式、性质、法则的一些重要条件和适用范围。教学中,只是正面对条件、结论进行讲解、应用,有时不能收到应有的效果,如能根据学生认识状况举些反例,就能使学生留下深刻的印象。例如。小数的性质小数的末尾的零可添可去学生常会误将条件理解为小数点后面的零可添可去”,这时教师可举反例与”就会帮助学生分清条件。又如,学习了圆的周长计算公式兀1之后.在应用中可举如下反例:当圆的半径为2厘米时,求半圆的周长。教师出示:半圆的周长为一Z兀r/2=2厘米)。通过分析,使学生认识到应用公式时要注意公式的使用条件,同时也提醒学生要注意题目条件,缜密地解决问题。课程标准中指出,数学建模是把现实世界中的实际问题加以提炼抽象为数
16、学模型,求出模型的解,验证模型的合理性,并用该数学模型所提供的解答来解释现实问题、数学知识的这一过程也就是数学建模。建立和求解模型的过程包括:从现实生活或具体情境中抽象出数学问题,用数学符号建立方程、不等式、函数等表示数学问题中的数量关系和变化规律,求出结果、并讨论结果的意义。这些内容的学习有助于学生初步形成模型思想,提高学习数学的兴趣和应用意识。一方面要求教师帮助学生有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,帮助学生认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学
17、生的应用意识。新颁布的全日制义务教育数学课程标准在阐述总体目标时明确指出:通过义务阶段的数学学习,使学生初步学会运用数学思维方式去观察、分析现实社会,去了解日常生活中和其他学科学习中的问题,增强应用数学的意识。体会数学与自然及人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心。”在阐述基本理念时强调:学生的数学学习内容应当是现实的、有意义的、富有挑战性的,这些内容要有利于学生主动地进行观察、实验、猜测、验证、推理和交流等数学活动。”此可见,新的全日制义务教育数学课程标准教学立意之高、教学理念之新是以前的教学大纲所没有的。要实现全日制义务教育数学课程标准提出的教学目标,除了转变
18、教学观念、改进教学方法以外,还必需在课堂教学的模式上有所突破。只有当教学内容与课堂教学的模式完全吻合时才能发挥其课堂教学的最大效能。以目前的应用题教学为例,我们总感到教学效果不理想,究其原因,有一个不可忽略的因素那就是教材所提供的教学内容老师们很难找到一种与此相适应的课堂教学的模式。从全日制义务教育数学课程标准的内容标准中可以发现它所提供的教学内容不但是现实的、贴近学生生活实际的,而且呈现的方式也是丰富多彩的。针对这样的教学内容本人认为在小学数学教学中可以尝试数学建模教学。一、什么是数学建模要了解数学建模,首先必须弄清数学模型这个概念,目前在我国对数学模型还没有一个十分权威的定义,但比较一致的
19、认识是:数学模型是对现实世界中的原型,为了某一个特定目的,作出一些必要的简化和假设,运用适当的数学工具得到一个数学结构。而数学建模它不但包含数学模型的建立,而且是对数学模型的求解和验证,并用该数学模型所提供的解答来解释实际问题。从数学建模的概念中可以发现数学建模一般是指解决实际问题,要求学生能把实际问题归纳或抽象成数学模型加以解决,从数学角度讲,数学建模是舍去无关紧要的东西,保留其数学关系,形成数学结构。可以这样讲,只要有数学应用的地方,就有数学建模。二、小学生数学建模的可行性当我们刚接触一个新的名词或一个新的概念或一种新的方法时总感到很陌生,也会觉得无从入手。但当我们理解了这些新事物的本质属
20、性以后,我们往往又觉得我们曾似相识,数学建模也是如此,对数学建模这个概念来讲也许是新的,但回想我们的日常教学不难发现我们的学生已经有数学建模的思想或意识,只不过没有从理论的角度把它概括出来而已。例如,在以往教学求比一个数多几的应用题时,经常碰到这样一个例题小明家养了6只公鸡,养的母鸡只数比公鸡多3只,母鸡有几只?”在教学此例时老师们都是采用让学生摆、说等教学活动来帮助学生分析数量关系,理解同样多的部分”,但教学效果并没有我们老师想象的那么好,一般同学们在解释数量关系式6+3=9时,母鸡和公鸡是不分的,极大部分学生都会说6只公鸡加3只母鸡等于9只母鸡。为什么学生不会用同样多的部分”去描述母鸡的只
21、数,其原因是十分明显的,那就是学生在操作时头脑中已经对现实问题进行简化,并建立了一个有关母鸡只数求法的数学模型,这个模型显然是一种叠加模型,即6+3=9,而6表示什么在模型中已经是无关紧要,因为实际问题最终要解决的是数量问题。从以上这个教学实例至少可以说明两点;其一,小学生在解决实际问题时有他自己的数学模型,有他自圆其说的解读数学模型的方法,因此,小学生也有数学建模能力。其二,当学生的数学模型一旦建立了以后,即使他的模型是不合理或不规范的,但外人很难改变他的模型结构。三、数学建模教学的基本模式1、为学生提供一个比较详实的问题背景。要建模首先必须对实际原形有充分的了解,明确原型的特征,只有做到这
22、一点,才能使建模者对实际问题进行简化。于小学生的生活经历有限,对一些实际问题的了解比较含糊,这不利于学生对实际问题的简化和抽象,所以条件许可的话可以组织学生参与一些相关的社会调查和实践活动,让学生亲身体验生活,亲自经历事情的发生和发展过程,让学生主动获取相关的信息和数学材料,从而培养学生对事物的观察和分辨能力,增强学生的数学意识。以上做法不但能为学生数学建模提供真实可信的感性材料,而且可以推动学生关心社会、了解社会、体验人生。但是,小学生是以学习间接知识为主,所以不可能每教一个应用题都让学生亲身经历实际问题。因此,我们只能用文字或语言来表达实际问题的背景。但在用文字表达或语言表达实际问题的背景
23、时,要克服对实际问题的情境描述简单化和数学材料来源的单一化,目前我们使用的教材,基本上是为提高学生的解题能力而设计。因此,学生的思维能力,推理判断能力、抽象概括能力等基本上是通过做习题来培养的。长期这样训练导致学生数学应用意识薄弱,应用能力下降,实践能力和创新能力被扼杀。为此,我认为教师在提供问题的背景时,首先必须考虑这些背景材料学生是否熟悉,学生是否对这些背景材料感兴趣。为此,我们可以创造性地使用教材,根据目前教材所提供的教学内容,结合学生的生活实际,把学生所熟悉的或了解的一些生活实例作为应用题教学的问题背景,这样可以克服教材的不足,使学生对问题背景有一个详实的了解,这不但有利于学生对实际问
24、题的简化,而且能提高学生的数学应用意识。2、发挥学生的想象对实际问题进行简化。儿童有无限的创造力,虽然他们所掌握的数学知识是有限的,但他们的想象力是无限的,他们敢想敢做善于异想天开,这对简化实际问题,构建数学模型是十分有利的。因此,在数学建模过程中教师要善于调动学生主动建模的积极性,千万不能对学生的不合理的归纳或不恰当的抽象,以及不合常情的假设加以批评和指责,恰恰相反要抓住他们闪光的地方加以表扬、鼓励,并通过适度的引导和点拨使学生对实际问题的简化更加恰当。但又要防止教师对问题的理解代替学生的想法,虽然教师的数学知识比学生丰富,但在想象能力方面可以说教师不如学生,所以在对实际问题进行简化时学生有
25、学生的优势,我曾例举过两个数学老师和一个六年级学生同做一道数学应用题的例子,这道应用题是这样描述的:某市举行篮球选拔赛,报名参赛的球队有20个,比赛采用淘汰制,最终决出一名冠军参加省级篮球比赛,问一共要比赛几场?”教师在简化这个实际问题时先给每个参赛队分别编上号,再根据比赛的顺序把实际问题简化为如下形式:而学生在简化这个实际问题时,抓住淘汰”这个词进行简化。学生是这样想的:因为是淘汰赛,所以无论是谁和谁比,每赛一场必定淘汰一个队。因此学生把这个实际问题简化为减法。我们先不说他们最终构建模型如何,从简化的角度讲,显然学生比教师的想法更简便、更明了。为什么学生在这个实际问题的简化中优势比教师明显?除了以上所讲的学生有丰富的想象力外,还有一个不可忽视的因素那就是简化还受到生活经验的干扰,一般说来生活经验越丰富越有利于对实际问题的简化,但反过来生活经验中的定势思维有可能会干扰对实际问题的简化。上例中于教师受日常比赛模式的影响,对这个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《证券交易概论》课件
- 《信号的描述和分类》课件
- 酒渣鼻样结核疹的临床护理
- 选择性lgA缺乏症的临床护理
- 单纯性外阴炎的健康宣教
- 《机床电气线路的安装与调试》课件-第9章
- 奶稀的健康宣教
- 孕期抗磷脂抗体综合征的健康宣教
- 子宫壁妊娠的健康宣教
- 小腿皮炎的临床护理
- 电气照明设备相关知识课件
- 妇产科护理学理论知识考核题库与答案
- GB∕T 36681-2018 展览场馆服务管理规范
- 【高清版】GB 19079.1-2013体育场所开放条件与技术要求第1部分:游泳场所
- 【小学语文】人教版五年级上册语文选择题100道
- 压铸过程原理及压铸工艺技术培训
- 巴赫作品 《C大调前奏曲》Prelude in C major,BWV846;J. S. Bach古典吉他谱
- plc课程设计模压机控制
- VDA63过程审核案例
- FP21表说明书
- 【方案】桩基静载检测方案
评论
0/150
提交评论