合情推理和演绎推理》._第1页
合情推理和演绎推理》._第2页
合情推理和演绎推理》._第3页
免费预览已结束,剩余12页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第十七章推理与证明知识网络归纳合情推理类比推理与证明演绎推理数学归纳法直接证明综合法分析法反证法间接证明第1讲 合情推理和演绎推理知识梳理1. 推理根据一个或几个事实(或假设)得出一个判断,这种思维方式叫推理.从结构上说,推理一般由两部分组成 ,一部分是已知的事实(或假设)叫做前提,一部分是由已 知推出的判断,叫结论.2. 合情推理:根据已有的事实,经过观察、分析、比较、联想,再进行归纳、类比,然后提出的推理叫合情 推理。合情推理可分为归纳推理和类比推理两类:(1)归纳推理:由某类事物的部分对象具有某些特征,推出该类事物的全部对象具有这些特 征的推理,或者由个别事实概括出一般结论的推理。简言之

2、,归纳推理是由部分到整体、由 个别到一般的推理(2)类比推理:由两类对象具有某些类似特征和其中一类对象具有的某些已知特征,推出另 一类对象也具有这些特征的推理,简言之,类比推理是由特殊到特殊的推理。3. 演绎推理:从一般性的原理出发,推出某个特殊情况下的结论的推理叫演绎推理,简言之,演绎推理是由一般到特殊的推理。三段论是演绎推理的一般模式,它包括:(1)大前提-已知的一般原理;(2)小前提-所研究的特殊情况;(3)结论一一根据一般原理,对特殊情况作出的判断。重难点突破重点:会用合情推理提出猜想,会用演绎推理进行推理论证,明确合情推理与演绎推理的区别与 联系难点:发现两类对象的类似特征、在部分对

3、象中寻找共同特征或规律重难点:利用合情推理的原理提出猜想,利用演绎推理的形式进行证明1、归纳推理关键是要在部分对象中寻找共同特征或某种规律性问题 1:观察:.7 .15 2,11 ; .55165 211 ; 、3一319 3 2.币;对于任意正实数a,b,试写出使ja jb 2jn成立的一个条件可以是.点拨:前面所列式子的共同特征特征是被开方数之和为22,故a b 222、类比推理关键是要寻找两类对象的类似特征问题2:已知抛物线有性质:过抛物线的焦点作一直线与抛物线交于A、B两点,则当AB与抛物线的对称轴垂直时,AB的长度最短;试将上述命题类比到其他曲线,写出相应的一个真命题为.点拨:圆锥曲

4、线有很多类似性质,“通径”最短是其中之一,答案可以填:过椭圆的焦点作一2b2直线与椭圆交于 A、B两点,则当AB与椭圆的长轴垂直时,AB的长度最短(| AB| 鲁 )a3、运用演绎推理的推理形式(三段论)进行推理问题3 :定义x为不超过x的最大整数,则 卜2.1=点拨:“大前提”是在(,x找最大整数,所以-2.1=-3热点考点题型探析考点1合情推理题型1用归纳推理发现规律例1通过观察下列等式,猜想出一个一般性的结论,并证明结论的真假。.- 2- 2cl°3. 2sin 15 sin 75 sin 135; sin 302202020320sin 45 sin 105 sin 165-

5、 sin 602【解题思路】注意观察四个式子的共同特征或规律(2 0 2 2解析猜想:sin (60 ) sin sin (证明:左边=(sin cos60°cos sin 600)2sin20. 203sin 90 sin 150 220203sin 120 sin 180 一21)结构的一致性,(2)观察角的“共性”0360 )22(sin cos60 cos sin 60 )322、3 亠、丄=(si ncos )=右边2 2【名师指引】(1)先猜后证是一种常见题型,二是“递推型”,三是“循环型”(2)归纳推理的一些常见形式:一是“具有共同特征型”(周期性)单个蜂例2 (09九

6、校联考)蜜蜂被认为是自然界中最杰出的建筑师, 巢可以近似地看作是一个正六边形,如图为一组蜂 巢的截面图其中第一个图有1个蜂巢,第二个图I有7个蜂巢,第三个图有 19个蜂巢,按此规律,以f (n)表示第n幅图的蜂巢总数则f=; f (n) =.【解题思路】找出 f (n) f (n 1)的关系式解析f(1)1, f(2)16, f (3)16 12, f (4)16 121837f(n) 16 12186(n 1) 3n2 3n 1【名师指引】处理“递推型”问题的方法之一是寻找相邻两组数据的关系【新题导练】1. (2008二模文、理)对大于或等于2的自然数m的n次方幕有如下分解方式:421 3

7、574313 1517197 9,3右m (mN*)的分解中最小的数是3, 7,13,,2 mm 1,73,则m的2221 3313 5332 3 53 7 9 11根据上述分解规律,则5213 5值为.解析m3的分解中,最小的数依次为由 m2 m 173 得 m 92. (2010调研二理)函数f(x)由下表定义:5314f (x)1右 a° 5, an 1f (an), n解析a。5 , a1 2, a223450,1,2, | | | ,贝廿 a20074-a34,a34,a45,an4an,82007点评:本题为循环型3. (2010调研)图(1 )、(2)、( 3)、(4)

8、分别包含1个、5个、13个、25个第二十九届奥运会吉祥物“福娃迎迎”,按同样的方式构造图形,设第n个图形包含f(n)个“福娃迎迎”,则f(5) ; f( n) f(n 1) (答案用数字或n的解析式表示)解析f (5)41, f(n)f (n 1)4(n 1)4. (2008揭阳一模)L1 1设 f0(x) cosx, f1(x)f°'(x), f2(x)f(x), ID,fn1( x)fn'(x) ,n N ,则 f2008( x)=()A. si nxBi. cosxC.sin xD.cosx解析f0(x) cosx ,f,x)sin x ,f2(X)cosx ,

9、f3(x) sin x , f4(x) cosx ,fn 4(x)fn(x) , f2008(x) = fo(x) COSX题型2用类比推理猜想新的命题1例1 (2010调研)已知正三角形切圆的半径是高的-,把这个结论推广到空间正四面体,类似3的结论是.【解题思路】从方法的类比入手解析原问题的解法为等面积法,即111Sah 3 ar rh ,223类比问题的解法应为等1 1体积法,V Sh 4 Sr1rh即正四面体的切球的半径是高13344【名师指引】(1 )不仅要注意形式的类比,还要注意方法的类比(2)类比推理常见的情形有:平面向空间类比;低维向高维类比;等差数列与等比数列类比; 实数集的性

10、质向复数集的性质类比;圆锥曲线间的类比等例2 在 ABC中若 C 90°,则cos2 A cos2 B 1,用类比的方法,猜想三棱锥的类似性质,并证明你的猜想【解题思路】考虑两条直角边互相垂直如何类比到空间以及两条直角边与斜边所成的角如何类比到空间解析由平面类比到空间,有如下猜想:“在三棱锥P ABC中,三个侧面PAB,PBC,PCA两 两垂直,且与底面所成的角分别为,则cos2cos2cos21 ”证明:设P在平面ABC的射影为O,延长CO交AB于M,记PO h由 PC PA, PC PB 得 PC 面 PAB,从而 PC PM,又 PMChhhcossinPCOcos, cosP

11、CPAPBVp1ABCPA PBPC1 1(PA PB cos1PB PC cos63 22-PC PA cos ) h2cosPCcosPAcos)hPB1 即 cos2cos22cos 1【名师指引】(1 )找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积,平面上的角对应空间角等等;(2)找对应元素的对应关系,如:两条边(直线)垂直对 应线面垂直或面面垂直,边相等对应面积相等【新题导练】5. (2010二模文)现有一个关于平面图形的命题:如图,同一个平面有两个边长都是 a的正方形,2其中一个的某顶点在另一个的中心,则这两个正方形重叠部分的面积恒为类比到空间,4有两个棱长均

12、为a的正方体,其中一个的某顶点在另一个的中心,则这两个正方体重叠部分的体积恒为3解析解法的类比(特殊化),易得两个正方体重叠部分的体积为86. (2010 模)已知 ABC的三边长为a,b,c,切圆半径为r (用S ABC表示 ABC的面积), 则S abc -r(a b c);类比这一结论有:若三棱锥 A BCD的切球半径为R,则三棱锥2体积Va BCD 1解析3R(S ABC S ABD S ACD S BCD7. (2008届省市高三理科数学高考模拟题(二)在平面直角坐标系中,直线一般方程为Ax By C 0,圆心在(x0,y0)的圆的一般方程为2 2 2(X X。)(y y。)r ;则

13、类似的,在空间直角坐标系中,平面的一般方程为,球心在(x°, y° ,z°)的球的一般方程为 2 2 2 2解析Ax By Cz D 0 ; (x x°)(y y°)(z Z0)r8. 对于一元二次方程,有以下正确命题:如果系数a-,b-,c-和a2,b2,C2都是非零实数,方程a-x2 bx c- 0和a2X2 b2X C2 0在复数集上的解集分别是 A和B,贝Ua -b-C1 ”是“ A B ”的充分必要条件.a 2b?C2试对两个一元二次不等式的解集写出类似的结果,并加以证明.解:(3)如果系数a-,bi,c-和a2,b2,C2都是非零实

14、数,不等式 a-x2 b-x c- 0和a2X2 b2x C2 0的解集分别是 A和B,则“- - -”是“ A B ”的既不充分 a2b2C2也不必要条件可以举反例加以说明.9已知等差数列的定义为:在一个数列中,从第二项起,如果每一项与它的前一项的差都为同一 个常数,那么这个数叫做等差数列,这个常数叫做该数列的公差.类比等差数列的定义给出“等和数列”的定义: ;已知数列 an是等和数列,且 a- 2,公和为5,那么a-8的值为这个数列的前n项和Sn的计算公式为 解析在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数叫做等和数列,这个常数叫做该数列的公和;a-83 ; Sny5

15、n,n为奇数2切,n为偶数2考点2演绎推理 题型:利用“三段论”进行推理例-(07启东中学模拟)某校对文明班的评选设计了a,b,c,d,e五个方面的多元评价指标,并通过经验公式样 Sa c 1b d ;来计算各班的综合得分,S的值越高则评价效果越好,若某班在自测过程中各项指标显示出0 c d e b a,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为 .(填入a,b,c,d,e中的某个字母)【解题思路】从分式的性质中寻找 S值的变化规律解析因a,b,c,d,e都为正数,故分子越大或分母越小时,S的值越大,而在分子都增加 1的前提下,分母越小时, S的值增长越多,

16、0 c d e b a,所以c增大1个单位会使得S的值增加最多【名师指引】 此题的大前提是隐含的,需要经过思考才能得到例2 ( 03)已知集合M是满足下列性质的函数f(x)的全体:存在非零常数T,对任意x R,有 f(x+T)=T f(x)成立.(1) 函数f(x)= x是否属于集合 M ?说明理由;(2) 设函数f(x)=ax (a>0,且a丰1)的图象与y=x的图象有公共点,证明:f(x)=ax M ;(3) 若函数f(x)=sinkx M ,数k的取值围.【解题思路】 函数f(x)是否属于集合 M ,要看f(x)是否满足集合 M的“定义”,解(1)对于非零常数 T, f(x+T)=

17、x+T, f(x)=Tx.因为对任意x R, x+T= Tx不能恒成立,所以 f(x)= x M .(2) 因为函数f(x)=ax (a>0且a丰1)的图象与函数 y=x的图象有公共点,x所以方程组:y a有解,消去y得ax,y x显然x=0不是方程ax=x的解,所以存在非零常数T,使aT=T.于是对于 f(x)=ax有 f(x T) ax TaT ax T ax Tf (x)故 f(x)=ax M.(3) 当 k=0 时,f(x)=0,显然 f(x)=0 M.当k丰0时,因为f(x)=sinkx M ,所以存在非零常数 T,对任意x R,有f(x+T)=T f(x)成立,即 sin(k

18、x+kT)=Tsirkx .因为 k丰 0,且 x R,所以 kx R, kx+kT R,于是 sinkx 1, 1, sin(kx+kT) 1, 1,故要使 sin(kx+kT)=Tsinkx .成立,只有 T= 1,当 T=1 时,sin(kx+k)=sinkx 成立,则 k=2m n , m Z .当 T= 1 时,sin(kx k)= sinkx 成立,即 sin(kx k+ n )= sinkx 成立,则一k+ n =2m n , m Z,即 k= 2(m 1) n , m Z .实数k的取值围是k|k= mn , m Z【名师指引】 学会紧扣“定义”解题【新题导练】10. (201

19、0质检理)定义a*b是向量a和b的“向量积”,它的长度 为向量a和b的夹角,若U (2,0), U V (1, v3),则I:f a 一一 II呻v)l46* JJru Jla (*sin解析v (1,、3),u v (3, 3),sin u,u v|u (u v)| 2 . 311.(2010二模文)一个质点从 A出发依次沿图中线段到达 B、C、D、E、F、G、H、丨、 J各点,最后又回到 A (如图所示),其中:AB BC,AB/CD/EF /HG /IJ,BC/DE / FG / /HI /JA .欲知此质点所走路程,至少需要测量n条线段的长度,则 n ( B )A. 2 B. 3C.

20、4 D. 5解析只需测量AB,BC,GH 3条线段的长A .4 , 6, 1,7 B .7 , 6, 1 , 4 C .6 , 4, 1, 7 D .1 , 6, 4, 7a2b5a62bc7 /口b4解析由得选C2c3d18c14d16d712. (2010调研二)为确保信息安全,信息需加密传输,发送方由明文密文(加密),接受方由密文 明文(解密),已知加密规则为:明文a,b,c,d对应密文a 2b,2b c,2c 3d,4d,例如,明文1,2,3,4对应密文5,7,18,16 当接受方收到密文 14,9,23,28时,则解密得到的明文为().13.对于任意的两个实数对(a,b)和(c,d)

21、,规定:(a,b)(c,d),当且仅当a c,b d ;运算“ ”为:(a,b)(c,d) (ac bd,bc ad);运算“”为:(a,b)(c,d) (ac,b d),设 p,q R ,若(1,2) (p,q)(5,0),则(1,2) (p,q)C. (0,2)D . (0, 4)A. (4,0)B. (2,0)解:由题意,P2p2q 5,解得q 01,所以正确答案为(B).2点评:实际上,本题所定义的实数对的两种运算就是复数的乘法与加法运算.我们可以把该抢分频道基础巩固训练1、对于集合A,B,定义运算A B x|x A且x B,则A (A B)=()A.B B.A C. A B D. A

22、 B解析D 用图示法2、命题“有些有理数是无限循环小数,整数是有理数,所以整数是无限循环小数”是假命题, 推理错误的原因是A.使用了归纳推理B.使用了类比推理C.使用了“三段论”,但大前提错误D.使用了“三段论”,但小前提错误解析大前提是特指命题,而小前提是全称命题,故选C3、(华南师大附中2007 2008学年度高三综合测试(三)给出下面类比推理命题(其中Q为有理数集,R为实数集,C为复数集):“若a、b R,则a b 0b ”类比推出“ a、c C,则a b右a、b、c、dR,则复数a bi c dia c, b d ”类比推出a、b、c、d Q,则 a b . 2 c d . 2a c,

23、b d ”“若 a、b、R,则 a b 0a b ”类比推出“若a、b C,则a b“若x R,则|x| 11 x 1 ”类比推出“若z C,则|z| 1其中类比结论正确.的个数有A. 1B. 2C. 3()D. 4解析类比结论正确的只有4、如图第n个图形是由正n + 2边形 扩展”而来,(n=l,2,3, )。则第n 2 个图形中共有个顶点。解析设第n个图中有an个顶点,则a13 3 3 , a24 4 4 ,an n n n ,an 2 (n 2)2 n 2 n2 3n 25、如果函数f(x)在区间D上是凸函数,那么对于区间D的任意Xi , X2,Xn ,都有f(xJ f(X2)d f(X

24、l).若y sinx在区间(0,)上是凸nn函数,那么在 ABC中,si nA si nB si nC的最大值是 .解析sin A sinB sinC3si nA3si n33 .,326、类比平面向量基本定理 “如果ei,e2是平面 两个不共线的向量,那么对于平面任一向量 a,有且只有一对实数仆2,使得a 162W ”,写出空间向量基本定理是:解析如果e1,e2,e3是空间三个不共面的向量,那么对于空间任一向量a,有且只有一对实数1, 2, 3,使得 a1ei 2e23e3综合提高训练7、(2009 模)设P是 ABC 一点, ABC三边上的高分别为hA、hp、he , P到三边的距离依次为la、lb、lc,则有* 丄

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论