高考60天冲刺(圆锥曲线综合应用)_第1页
高考60天冲刺(圆锥曲线综合应用)_第2页
高考60天冲刺(圆锥曲线综合应用)_第3页
高考60天冲刺(圆锥曲线综合应用)_第4页
高考60天冲刺(圆锥曲线综合应用)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、高考60天冲刺圆锥曲线综合应用1点A、B分别是以双曲线的焦点为顶点,顶点为焦点的椭圆C长轴的左、右端点,点F是椭圆的右焦点,点P在椭圆C上,且位于x轴上方, (1)求椭圆C的的方程;(2)求点P的坐标;(3)设M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到M的距离d的最小值。2已知在平面直角坐标系中,向量,且 .(I)设的取值范围;(II)设以原点O为中心,对称轴在坐标轴上,以F为右焦点的椭圆经过点M,且取最小值时,求椭圆的方程.3设A、B是椭圆3x2y2=上的两点, 点N(1,3)是线段AB的中点.(1)确定的取值范围, 使直线AB存在, 并求直线AB的方程.(2

2、)线段AB的垂直平分线与椭圆相交于C,D两点, 求线段CD的中点M的坐标(3)试判断是否存在这样的, 使得A、B、C、D四点在同一个圆上?并说明理由.xyOPQREFT4设是抛物线上相异两点,且,直线与轴相交于()若到轴的距离的积为,求的值;()若为已知常数,在轴上,是否存在异于的一点,使得直线与抛物线的另一交点为,而直线与轴相交于,且有,若存在,求出点的坐标(用表示),若不存在,说明理由5已知点A、B的坐标分别是,.直线相交于点M,且它们的斜率之积为2.()求动点M的轨迹方程;()若过点的直线交动点M的轨迹于C、D两点, 且N为线段CD的中点,求直线的方程.6已知,点在轴上,点在轴的正半轴,

3、点在直线上,且满足,.()当点在轴上移动时,求动点的轨迹方程;()过的直线与轨迹交于、两点,又过、作轨迹的切线、,当,求直线的方程.7已知点C为圆的圆心,点A(1,0),P是圆上的动点,点Q在圆的半径CP上,且 ()当点P在圆上运动时,求点Q的轨迹方程; ()若直线与()中所求点Q的轨迹交于不同两点F,H,O是坐标原点,且,求FOH的面积 8如图,在直角坐标系中,已知椭圆的离心率e,左右两个焦分别为过右焦点且与轴垂直的直线与椭圆相交M、N两点,且|MN|=1() 求椭圆的方程;() 设椭圆的左顶点为A,下顶点为B,动点P满足,()试求点P的轨迹方程,使点B关于该轨迹的对称点落在椭圆上. 9已知

4、椭圆的中心在坐标原点,焦点在坐标轴上,且经过、三点()求椭圆的方程;()若直线:()与椭圆交于、两点,证明直线与直线的交点在直线上10如图,过抛物线x2=4y的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点。 ()设点P分有向线段所成的比为,证明()设直线AB的方程是x2y+12=0,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程。11已知椭圆的方程为,双曲线的左、右焦点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点。(1)求双曲线的方程;(2)若直线与双曲线C2恒有两个不同的交点A和B,且(其中O为原点),求的范围。12

5、如图,过抛物线的对称轴上任一点作直线与抛物线交于A、B两点,点Q是点P关于原点的对称点 设点P满足(为实数),证明:;设直线AB的方程是,过A、B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程13一束光线从点出发,经直线上一点反射后,恰好穿过点()求点关于直线的对称点的坐标;()求以、为焦点且过点的椭圆的方程;()设直线与椭圆的两条准线分别交于、两点,点为线段上的动点,求点 到的距离与到椭圆右准线的距离之比的最小值,并求取得最小值时点的坐标14已知平面上一定点和一定直线为该平面上一动点,作垂足为,.(1) 问点在什么曲线上?并求出该曲线方程;(2) 点是坐标原点,两点在点的轨迹上,若求的

6、取值范围15如图,已知E、F为平面上的两个定点 ,且,·,(G为动点,P是HP和GF的交点)(1)建立适当的平面直角坐标系求出点的轨迹方程;(2)若点的轨迹上存在两个不同的点、,且线段的中垂线与GFPHE(或的延长线)相交于一点,则(为的中点)16已知动圆过定点,且与直线相切.(1) 求动圆的圆心轨迹的方程;(2) 是否存在直线,使过点(0,1),并与轨迹交于两点,且满足?若存在,求出直线的方程;若不存在,说明理由.17已知若动点P满足 (1)求动点P的轨迹方C的方程; (2)设Q是曲线C上任意一点,求Q到直线的距离的最小值.18已知抛物线x=2py(p>0),过动点M(0,a

7、),且斜率为1的直线L与该抛物线交于不同两点A、B,|AB|2p, (1)求a的取值范围; (2)若p=2,a=3,求直线L与抛物线所围成的区域的面积;19如图,直角梯形ABCD中,ADBC,AB=2,AD=,BC=CBDA椭圆F以A、B为焦点且过点D, ()建立适当的直角坐标系,求椭圆的方程;()若点E满足,是否存在斜率两点,且,若存在,求K的取值范围;若不存在,说明理由。20已知是函数图象上一点,过点的切线与轴交于,过点作轴的垂线,垂足为 .(1)求点坐标;(2)若,求的面积的最大值,并求此时的值. 参考答案1解(1)已知双曲线实半轴a1=4,虚半轴b1=2,半焦距c1=,椭圆的长半轴a2

8、=c1=6,椭圆的半焦距c2=a1=4,椭圆的短半轴=,所求的椭圆方程为 (2)由已知,,设点P的坐标为,则由已知得 则,解之得, 由于y>0,所以只能取,于是,所以点P的坐标为9分(3)直线,设点M是,则点M到直线AP的距离是,于是, 又点M在椭圆的长轴上,即 当时,椭圆上的点到的距离 又 当时,d取最小值 2解:(1)由,得3分 夹角的取值范围是()6分(2) 8分10分当且仅当或 12分椭圆长轴 或故所求椭圆方程为.或 14分3(1)解: 依题意,可设直线AB的方程为y=k(x1)3, 代入3x2y2=, 整理得(k23)x22k(k3)x(k3)2=0 设A(x1,y1),B(x

9、2,y2), 则x1,x2是方程的两个不同的根,=4(k23)3(k3)2>0.且x2x1= , 由N(1,3)是线段AB的中点, 得 =1 , k(k3)=k23解得k=1, 代入得>12, 即的取值范围是(12, ), 直线AB的方程为y3=(x1),即xy4=0(2)CD垂直平分AB, 直线CD的方程为y3=x1, 即xy2=0,代入椭圆方程, 整理得4x24x4=0 又设C(x3,y3),D(x4,y4),CD的中点C(x0,y0), 则x3,x4是方程的两根, x3x4=1, 且x0= (x3x4)=, y0 =x02 = , 即M(, )(3)由弦长公式可得|CD|=

10、|x1x2|= 将直线AB的方程xy4=0,代入椭圆方程得4x28x16=0 同理可得|AB|= ·|x1x2|= 当>12时, > , |AB|<|CD|, 假设存在>12, 使得A、B、C、D四点共圆, 则CD必为圆的直径, 点M为圆心, 点M到直线AB的距离为d= = = . 于是由、式和勾股定理可得.|MA|2=|MB|2=d2 |2 = = = |2. 故当>12时, A、B、C、D四点均在以M为圆心, | 为半径的圆上.4.解: ()·0,则x1x2y1y20, 1分又P、Q在抛物线上,y122px1,y222px2, y1y20,

11、 y1y24p2, |y1y2|4p2, 3分又|y1y2|4,4p24,p=1 4分()设E(a,0),直线PQ方程为xmya ,联立方程组 , 5分消去x得y22pmy2pa0, 6分 y1y22pa , 7分 设F(b,0),R(x3,y3),同理可知:y1y32pb , 8分由、可得 , 9分 若 3,设T(c,0),则有(x3c,y30)3(x2c,y20),y33y2 即3, 10分将代入,得b3a 11分又由()知,·0, y1y24p2,代入,得2pa4 p2a2p, 13分 b6p,故,在x轴上,存在异于E的一点F(6p,0),使得 314分注:若设直线PQ的方程为

12、ykxb,不影响解答结果5解: ()设1分因为,所以.3分化简得:. .4分() 设 当直线x轴时,直线的方程为,则,其中点不是N,不合题意6分设直线的方程为 将代入得(1) (2) .8分(1)-(2)整理得: 11分直线的方程为即所求直线的方程为解法二: 当直线x轴时,直线的方程为,则,其中点不是N,不合题意.故设直线的方程为,将其代入化简得由韦达定理得,又由已知N为线段CD的中点,得,解得,将代入(1)式中可知满足条件.此时直线的方程为,即所求直线的方程为6()解:设则.2分由得,.4分又即,6分由得.8分()设, 因为 ,故两切线的斜率分别为、10分由方程组得 .12当时,所以 所以,

13、直线的方程是.14分7解:(1)由题意MQ是线段AP的垂直平分线,于是|CP|=|QC|+|QP|=|QC|+|QA|=2>|CA|=2,于是点 Q的轨迹是以点C,A为焦点,半焦距c=1,长半轴a=的椭圆,短半轴点Q的轨迹E方程是:.4分 (2)设(x1,y1)H(x2,y2),则由, 消去y得 6分 又点O到直线FH的距离d=1, 8解:()轴,,由椭圆的定义得:,-2分,-4分又得 ,-6分所求椭圆C的方程为-7分()由()知点A(2,0),点B为(0,1),设点P的坐标为则,,由4得,点P的轨迹方程为-9分设点B关于P的轨迹的对称点为,则由轴对称的性质可得:,解得:,-11分点在椭

14、圆上, ,整理得解得或 点P的轨迹方程为或,-13分经检验和都符合题设,满足条件的点P的轨迹方程为或-14分9()解法一:当椭圆E的焦点在x轴上时,设其方程为(),则,又点在椭圆上,得解得椭圆的方程为当椭圆E的焦点在y轴上时,设其方程为(),则,又点在椭圆上,得解得,这与矛盾综上可知,椭圆的方程为 4分解法二:设椭圆方程为(),将、代入椭圆的方程,得解得,椭圆的方程为 4分()证法一:将直线:代入椭圆的方程并整理,得, 6分设直线与椭圆的交点,由根与系数的关系,得, 8分直线的方程为:,它与直线的交点坐标为,同理可求得直线与直线的交点坐标为 10分下面证明、两点重合,即证明、两点的纵坐标相等:

15、,因此结论成立综上可知,直线与直线的交点在直线上 14分证法二:将直线:,代入椭圆的方程并整理,得, 6分设直线与椭圆的交点,由根与系数的关系,得, 8分直线的方程为:,即直线的方程为:,即 10分由直线与直线的方程消去,得 直线与直线的交点在直线上 14分证法三:将直线:,代入椭圆方程并整理,得, 6分设直线与椭圆的交点,由根与系数的关系,得, 8分消去得, 10分直线的方程为:,即直线的方程为:,即 12分由直线与直线的方程消去得,直线与直线的交点在直线上 14分10解()依题意,可设直线AB的方程为,代入抛物线方程得 设A、B两点的坐标分别是(x1,y1)、(x2,y2),则x1、x2是

16、方程的两根。所以由点P(0,m)分有向线段所成的比为, 得, 即又点Q是点P关于原点的以称点,故点Q的坐标是(0,-m),从而 = = = = =0, 所以 () 由得点A、B的坐标分别是(6,9)、(-4,4)。 由得, 所以抛物线在点A处切线的斜率为。 设圆C的方程是, 则 解之得 所以圆C的方程是,11解:(1)设双曲线的方程为 (1分)则,再由得, (3分)故的方程为 (4分)(2)将代入得 (5分)由直线与双曲线C2交于不同的两点得: (7分)且 (8分)设,则 (10分)又,得 即,解得: (12分)由、得:故k的取值范围为。 (14分)12解依题意,可设直线AB的方程为,代入抛物

17、线方程,得: 分设A、B两点的坐标分别是、,则是方程的两根,所以, 分由点P满足(为实数,),得, 即又点Q是点P关于原点的以称点,故点Q的坐标是,从而= = = =0 6分 所以, 7分 由得点A、B的坐标分别是、由得,所以,抛物线在点A处切线的斜率为 9分 设圆C的方程是, 则 11分 解得: 13分 所以,圆C的方程是 14分13解:()设的坐标为,则且2分解得, 因此,点 的坐标为 4分(),根据椭圆定义,得,5分,所求椭圆方程为 7分(),椭圆的准线方程为 8分设点的坐标为,表示点到的距离,表示点到椭圆的右准线的距离则, 10分令,则,当, , 在时取得最小值 13分因此,最小值,此

18、时点的坐标为14分注:的最小值还可以用判别式法、换元法等其它方法求得说明:求得的点即为切点,的最小值即为椭圆的离心率14解:(1)由,得: ,(2分)设,则,化简得: ,(4分)点P在椭圆上,其方程为.(6分)(2)设、,由得:,所以,,得:,即: (8分)因为,所以 (9分)又因为,所以 (10分)由-得: ,化简得: ,(12分)因为,所以.解得: 所以的取值范围为. (1分)15解:(1)如图1,以所在的直线为轴,的中垂线为轴,建立平面直角坐标系。-1分 由题设,而-3分点是以、为焦点、长轴长为10的椭圆,故点的轨迹方程是:-4分(2)如图2 ,设,且,-6分即又、在轨迹上,PBGEAHFOC图2即,-8分代入整理得:,-10分, ,即-14分16(1)如图,设为动圆圆心, ,过点作直线的垂线,垂足为,由题意知:, 2分即动点到定点与定直线的距离相等,由抛物线的定义知,点的轨迹为抛物线,其中为焦点,为准线, 动点的轨迹方程为 5分(2)由题可设直线的方程为,由得 , 7分设,则,9分 由,即 ,于是,11分即, ,解得或(舍去),13分又, 直线存在,其方程为 14分17解:(1)设动点P(x,y),则由已知得点P的轨迹方程是椭圆C:(2)解一:由几何性质意义知,椭圆C与平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论