全国各地中考数学压轴题汇编之_第1页
全国各地中考数学压轴题汇编之_第2页
全国各地中考数学压轴题汇编之_第3页
全国各地中考数学压轴题汇编之_第4页
全国各地中考数学压轴题汇编之_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2017全国各地中考数学压轴题汇编之一1(2017江苏淮安,28,14分)如图,在平面直角坐标系中,二次函数的图像与坐标轴交于A、B、C三点,其中点A的坐标为(3,0),点B的坐标为(4,0),连接AC,BC动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为秒连接PQ(1)填空:_,_;(2)在点P、Q运动过程中,APQ可能是直角三角形吗?请说明理由;(3)在轴下方,该二次函数的图像上是否存在点M,使PQM是以点P为直角顶点的等腰直角三角形?

2、若存在,请求出运动时间;若不存在,请说明理由;(4)如图,点N的坐标为(,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q恰好落在线段BC上时,请直接写出点Q的坐标【分析】(1)将A(3,0)、B(4,0)代入即可求解;(2)若APQ为直角三角形,则APQ90°(PAQ与PQA不可能为直角)连接QC,则AQ2AP2QC2PC2PQ2,据此列出关于的方程求解,若的值满足04,则APQ可能是直角三角形,否则不可能;(3)过点P作DE轴,分别过点M、Q作MDDE,QEDE,垂足分别为D、E,构成“一线三直角”全等模型,用含的式子表示点M的坐标;将点M的坐标代入二次函数的表达

3、式求解;(4)分别求直线BC、直线NQ的函数表达式;解直线BC、NQ的函数达式组成的方程组【解析】(1),4(2)在点P、Q运动过程中,APQ不可能是直角三角形理由如下:若APQ是直角三角形,因为在点P、Q运动过程中,PAQ、PQA始终为锐角,所以APQ90°AQ2AP2QC2PC2PQ2连接QC由(1)知抛物线的函数表达式为,当0时,4C(0,4)OC4A(3,0),OA3由题意,得APOQAQOAOQ在RtAOC中,由勾股定理得AC5PC在RtOCQ中,QC2OQ2OC2APQ90°,AQ2AP2QC2PC2PQ2解得4.5由题意知044.5不符合题意,舍去在点P、Q运

4、动过程中,APQ不可能是直角三角形(3)如图,过点P作DE轴,分别过点M、Q作MDDE、QEDE,垂足分别为点D、E,MD交轴于点F,过点P作PG轴,垂足为点G,则PG轴,DE90°APGACO,即PG,AGPEGQGOOQAOAGOQ,DFEQMPQ90°,D90°,DMPDPMEPQDPM90°DMPEPQ又DE,PMPQ,MDPPEQPDEQ,MDPEAMMDDF,OFFGGOPDOAAGM(,)点M在轴下方的抛物线上,解得04,(4)Q(,)提示:连接OP,取OP中点R,连接RH、NR,延长NR交线段BC于点Q点H为PQ的中点,点R为OP的中点,

5、RHOQ,RHOQA(3,0)、N(,0),点N为OA的中点又点R为OP的中点,NRAP,RNACRHNRRNHRHNRHOQ,RHNHNORNHHNO,即NH是QNQ的平分线设直线AC的函数表达式为,把A(3,0)、C(0,4)代入,得解得,4直线AC的函数表达式为同理可求,直线BC的函数表达式为设直线NR的函数表达式为,把N(,0)代入,得0解得2直线NR的函数表达式为解方程组得Q(,)2(2017江苏南京,27,11分)折纸的思考【操作体验】用一张矩形纸片折等边三角形第一步,对折矩形纸片ABCD(ABBC)(图),使AB与DC重合,得到折痕EF,把纸片展平(图)第二步,如图,再一次折叠纸

6、片,使点C落在EF上的P处,并使折痕经过点B,得到折痕BG,折出PB,PC,得到PBC(1)说明PBC是等边三角形【数学思考】(2)如图小明画出了图的矩形ABCD和等边三角形PBC他发现,在矩形ABCD中把PBC经过图形变化,可以得到图中的更大的等边三角形请描述图形变化的过程(3)已知矩形一边长为3cm,另一边长为acm对于每一个确定的a的值,在矩形中都能画出最大的等边三角形请画出不同情形的示意图,并写出对应的a的取值范围【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4cm和1cm的直角三角形铁片,所需正方形铁片的边长的最小值为 cm【分析】(1)由折叠的性质,线段垂直平分线的性质可判

7、断;(2)根据旋转的性质和位似变换直接作图,写出过程即可;(3)根据图形,由勾股定理和等边三角形的性质求解;(4)由勾股定理和正方形的性质的性质直接求解【解析】(1)由折叠,PBPC,EF是BC的垂直平分线,PBPC,PBPCBC ,PBC是等边三角形(2)本题答案不惟一例如,如图,以点B为中心,在矩形ABCD中把PBC逆时针方向旋转适当的角度,得到P1B1C1;再以点B为位似中心,将P1B1C1放大,使C1的对应点C2落在CD上,得到P2BC2(3)当等边三角形的边长为3cm,acm为高时,则a332,当等边三角形的边长为acm,3cm为高时,则a23,然后分0a332,332a23,a23

8、画出示意图 (4)165当以4cm的直角边与正方形的边重合时,边长为4cm,正方形的面积为16cm2;当直角三角形的一个顶点与正方形的顶点重合,两外两个顶点在边上时,如图,四边形ABCD是正方形,BCCD,CD90°BFE90°,BFCEFD90°,BFCCBF90°,EFDCBF,BCFFDE,BCDFBFEF设BCa,由BF4,得CF16-a2,则DFa16-a2,可知a( a16-a2)41解得a165正方形得面积为25625因为2562516,所以a1653(2017江苏连云港,27,14分)问题呈现:如图1,点E、F、G、H分别在矩形ABCD的

9、边AB、BC、CD、DA上,AEDG,求证:2S四边形EFGHS矩形ABCD(S表示面积)实验探究:某数学实验小组发现:若图1中AHBF,点G在CD上移动时,上述结论会发生变化,分别过点E、G作BC边的平行线,再分别过点F、H作AB边的平行线,四条平行线分别相交于点A1、B1、C1、D1,得到矩形A1B1C1D1如图2,当AHBF时,若将点G向点C靠近(DGAE),经过探索,发现:2S四边形EFGHS矩形ABCD如图3,当AHBF时,若将点G向点D靠近(DGAE),请探索S四边形EFGH、S矩形ABCD与之间的数量关系,并说明理由迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)

10、如图4,点E、F、G、H分别是面积为25的正方形ABCD各边上的点,已知AHBF,AEDG,S四边形EFGH11,HF,求EG的长(2)如图5,在矩形ABCD中,AB3,AD5,点E、H分别在边AB、AD上,BE1,DH2,点F、G分别是边BC、CD上的动点,且FG,连接EF、HG,请直接写出四边形EFGH面积的最大值【分析】问题呈现:根据矩形的性质,通过割补法利用三角形的面积和矩形的面积可得到结论;实验探究:由题意得当将点G向点D靠近()时,通过割补法利用三角形的面积和矩形的面积可得到结论;迁移应用:(1)由上面的结论,结合图形,通过割补法利用三角形的面积和矩形的面积可得到结论;(2)直接根

11、据规律写出结果即可.【解析】问题呈现:证明:如图1中,四边形ABCD是矩形,ABCD,A90°,AEDG,四边形AEGD是矩形,SHGES矩形AEGD,同理SEGFS矩形BEGC,S四边形EFGHSHGESEFGS矩形BEGC实验探究:结论:2S四边形EFGHS矩形ABCD理由:,S四边形EFGH,2S四边形EFGH22222,2S四边形EFGHS矩形ABCD迁移应用:解:(1)如图4中,2S四边形EFGHS矩形ABCD252×113A1B1·A1D1,正方形的面积为25,边长为5,A1D12HF25229254,A1D12,A1B1,EG2A1B1252,EG(

12、2)2S四边形EFGHS矩形ABCD四边形A1B1C1D1面积最大时,矩形EFGH的面积最大如图51中,当G与C重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大此时矩形A1B1C1D1面积1·(2)如图52中,当G与D重合时,四边形A1B1C1D1面积最大时,矩形EFGH的面积最大此时矩形A1B1C1D1面积2·12,22,矩形EFGH的面积最大值4(2017江苏南通,28,13分)已知直线ykxb与抛物线yax2(a0)相交于A、B两点(点A在点B的左侧),与y轴正半轴相交于点C,过点A作ADx轴,垂足为D(1)若AOB60°,ABx轴,AB2,

13、求a的值;(2)若AOB90°,点A的横坐标为4,AC4BC,求点B的坐标;(3)延长AD、BO相交于点E,求证:DECO【分析】(1)如图1,由条件可知AOB为等边三角形,则可求得OA的长,在RtAOD中可求得AD和OD的长,可求得A点坐标,代入抛物线解析式可得a的值;(2)如图2,作辅助线,构建平行线和相似三角形,根据CFBG,由A的横坐标为4,得B的横坐标为1,所以A(4,16a),B(1,a),证明ADOOEB,则,得a的值及B的坐标;(3)如图3,设ACnBC由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(mn,am2n2),分别根据两三角形相似

14、计算DE和CO的长即可得出结论【解析】解:(1)如图1,抛物线yax2的对称轴是y轴,且ABx轴,A与B是对称点,O是抛物线的顶点,OAOB,AOB60°,AOB是等边三角形,AB2,ABOC,ACBC1,BOC30°,OC,A(1,),把A(1,)代入抛物线yax2(a0)中得:a;(2)如图2,过B作BEx轴于E,过A作AGBE,交BE延长线于点G,交y轴于F,CFBG,AC4BC,4,AF4FG,A的横坐标为4,B的横坐标为1,A(4,16a),B(1,a),AOB90°,AODBOE90°,AODDAO90°,BOEDAO,ADOOEB

15、90°,ADOOEB,16a24,a±,a0,a;B(1,);(3)如图3,设ACnBC,由(2)同理可知:A的横坐标是B的横坐标的n倍,则设B(m,am2),则A(mn,am2n2),ADam2n2,过B作BFx轴于F,DEBF,BOFEOD,DEam2n,OCAE,BCOBAE,COam2n,DECO5(2017江苏苏州,28,10分)如图,二次函数yx2bxc的图象与x轴交于 A、B两点,与y轴交于点C,OBOC点D在函数图象上,CDx轴,且CD2,直线l是抛物线的对称轴,E是抛物线的顶点(1)求b、c的值;(2)如图,连接BE,线段OC上的点F关于直线l的对称点F&

16、#39;恰好在线段BE上,求点F的坐标;(3)如图,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N试问:抛物线上是否存在点Q,使得PQN与APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由【分析】(1)由条件可求得抛物线对称轴,则可求得b的值;由OBOC,可用c表示出B点坐标,代入抛物线解析式可求得c的值;(2)可设F(0,m),则可表示出F的坐标,由B、E的坐标可求得直线BE的解析式,把F坐标代入直线BE解析式可得到关于m的方程,可求得F点的坐标;(3)设点P坐标为(n,0),可表示出PA、PB、PN的长,作QRPN,垂足为R,

17、则可求得QR的长,用n可表示出Q、R、N的坐标,在RtQRN中,由勾股定理可得到关于n的二次函数,利用二次函数的性质可知其取得最小值时n的值,则可求得Q点的坐标,【解析】解:(1)CDx轴,CD2,抛物线对称轴为x1-2,b-2OBOC,C(0,c),B点的坐标为(c,0),0c22cc,解得c3或c0(舍去),c3;(2)设点F的坐标为(0,m)对称轴为直线x1,点F关于直线l的对称点F的坐标为(2,m)由(1)可知抛物线解析式为yx22x3(x1)24,E(1,4),直线BE经过点B(3,0),E(1,4),利用待定系数法可得直线BE的表达式为y2x6点F在BE上,m2×262,

18、即点F的坐标为(0,2);(3)存在点Q满足题意设点P坐标为(n,0),则PAn1,PBPM3n,PNn22n3作QRPN,垂足为R,SPQNSAPM,(n1)(3-n)(-n22n3) ·QR,QR1点Q在直线PN的左侧时,Q点的坐标为(n1,n24n),R点的坐标为(n,n24n),N点的坐标为(n,n22n3)在RtQRN中,NQ21(2n3)2,n时,NQ取最小值1此时Q点的坐标为(,-); 点Q在直线PN的右侧时,Q点的坐标为(n11,n24)同理,NQ21(2n1)2,n时,NQ取最小值1此时Q点的坐标为(,-)综上可知存在满足题意的点Q,其坐标为(,-)或(,-)6(2

19、017江苏泰州,26,14分)平面直角坐标系xOy中,点A、B的横坐标分别为a、a+2,二次函数y=x2+(m2)x+2m的图象经过点A、B,且a、m满足2am=d(d为常数)(1)若一次函数y1=kx+b的图象经过A、B两点当a=1、d=1时,求k的值;若y1随x的增大而减小,求d的取值范围;(2)当d=4且a2、a4时,判断直线AB与x轴的位置关系,并说明理由;(3)点A、B的位置随着a的变化而变化,设点A、B运动的路线与y轴分别相交于点C、D,线段CD的长度会发生变化吗?如果不变,求出CD的长;如果变化,请说明理由【分析】(1)当a=1、d=1时,m=2ad=3,于是得到抛物线的解析式,

20、然后求得点A和点B的坐标,最后将点A和点B的坐标代入直线AB的解析式求得k的值即可;将x=a,x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,然后依据y1随着x的增大而减小,可得到(am)(a+2)(a+2m)(a+4),结合已知条件2am=d,可求得d的取值范围;(2)由d=4可得到m=2a+4,则抛物线的解析式为y=x2+(2a+2)x+4a+8,然后将x=a、x=a+2代入抛物线的解析式可求得点A和点B的纵坐标,最后依据点A和点B的纵坐标可判断出AB与x轴的位置关系;(3)先求得点A和点B的坐标,于是得到点A和点B运动的路线与字母a的函数关系式,则点C(0,2m),D(0,4m8)

21、,于是可得到CD与m的关系式【解析】解:(1)当a=1、d=1时,m=2ad=3,所以二次函数的表达式是y=x2+x+6a=1,点A的横坐标为1,点B的横坐标为3,把x=1代入抛物线的解析式得:y=6,把x=3代入抛物线的解析式得:y=0,A(1,6),B(3,0)将点A和点B的坐标代入直线的解析式得:,解得:,所以k的值为3y=x2+(m2)x+2m=(xm)(x+2),当x=a时,y=(am)(a+2);当x=a+2时,y=(a+24)(a+4),y1随着x的增大而减小,且aa+2,(am)(a+2)(a+2m)(a+4),解得:2am4,又2am=d,d的取值范围为d4(2)d=4且a2

22、、a4,2am=d,m=2a+4二次函数的关系式为y=x2+(2a+2)x+4a+8把x=a代入抛物线的解析式得:y=a2+6a+8把x=a+2代入抛物线的解析式得:y=a2+6a+8A(a,a2+6a+8)、B(a+2,a2+6a+8)点A、点B的纵坐标相同,ABx轴(3)线段CD的长随m的值的变化而变化y=x2+(m2)x+2m过点A、点B,当x=a时,y=a2+(m2)a+2m,当x=a+2时,y=(a+2)2+(m2)(a+2)+2m,A(a,a2+(m2)a+2m)、B(a+2,(a+2)2+(m2)(a+2)+2m)点A运动的路线是的函数关系式为y1=a2+(m2)a+2m,点B运

23、动的路线的函数关系式为y2=(a+2)2+(m2)(a+2)+2m点C(0,2m),D(0,4m8)DC=|2m(4m8)|=|82m|线段CD的长随m的值的变化而变化当82m=0时,m=4时,CD=|82m|=0,即点C与点D重合;当m4时,CD=2m8;当m4时,CD=82m7(2017江苏无锡,28,8分)如图,已知矩形ABCD中,AB4,ADm,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s)(1)若m6,求当P,E,B三点在同一直线上时对应的t的值(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且

24、只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围【分析】(1)如图1中,设PDx则PA6x首先证明BPBC6,在RtABP中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3;【解析】解:(1)如图1中,设PDx则PA6xP、B、E共线,BPCDPC,ADBC,DPCPCB,BPCPCB,BPBC6,在RtABP中,AB2AP2PB2,42(6x)262,x62或62(舍弃),PD62,t(62)s时,B、E、P共线(2)如

25、图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3作EQBC于Q,EMDC于M则EQ3,CEDC4易证四边形EMCQ是矩形,CMEQ3,M90°,EM,DACEDM,ADCM,ADCDME,AD4,如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3作EQBC于Q,延长QE交AD于M则EQ3,CEDC4在RtECQ中,QCDM,由DMECDA,AD,综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,这样的m的取值范围m48(2017江苏宿迁,26,10分)如图,在矩形纸片ABCD中,已知AB1,BC,点E在边

26、CD上移动,连接AE,将多边形ABCE沿直线AE翻折,得到多边形ABCE,点B、C的对应点分别为点B、C(1)当BC恰好经过点D时(如图1),求线段CE的长;(2)若BC分别交边AD,CD于点F,G,且DAE22.5°(如图2),求DFG的面积;(3)在点E从点C移动到点D的过程中,求点C运动的路径长【分析】(1)如图1中,设CEECx,则DE1x,由ADBDEC,可得,列出方程即可解决问题;(2)如图2中,首先证明ADB,DFG都是等腰直角三角形,求出DF即可解决问题;(3)如图3中,点C的运动路径的长为的长,求出圆心角、半径即可解决问题【解析】解:(1)如图1中,设CEECx,则

27、DE1x,ADBEDC90°,BADADB90°,BADEDC,BC90°,ABAB1,AD,DB,ADBDEC,x2CE2(2)如图2中,BADBD90°,DAE22.5°,EABEAB67.5°,BAFBFA45°,DFGAFBDGF45°,DFFG,在RtABF中,ABFB1,AFAB,DFDG,SDFG()2(3)如图3中,点C的运动路径的长为的长,在RtADC中,tanDAC,DAC30°,AC2CD2,CADDAC30°,CAC60°,的长9(2017江苏徐州,28,10分

28、)如图,已知二次函数yx24的图象与x轴交于A,B两点,与y轴交于点C,C的半径为,P为C上一动点(1)点B,C的坐标分别为B( ),C( );(2)是否存在点P,使得PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值 【分析】(1)在抛物线解析式中令y0可求得B点坐标,令x0可求得C点坐标;(2)当PB与相切时,PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC5,BP22,过P2作P2Ex轴于E,P2Fy轴于F,根据相似三角形的性质得到2,设OCP2E2x,CP2OEx,得到BE3x,CF2x4,于是得到FP

29、2,EP2,求得P2(,),过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2),当BCPC时,PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(3)如图3中,连接AP,OBOA,BEEP,推出OEAP,可知当AP最大时,OE的值最大,【解析】解:(1)在yx24中,令y0,则x±3,令x0,则y4,B(3,0),C(0,4);故答案为:3,0;0,4;(2)存在点P,使得PBC为直角三角形,当PB与相切时,PBC为直角三角形,如图(2)a,连接BC,OB3OC4,BC5,CP2BP2,CP2,BP22,过P2作P2Ex轴于E,P2Fy轴于F,则CP2FBP2E

30、,四边形OCP2B是矩形,2,设OCP2E2x,CP2OEx,BE3x,CF2x4,2,x,2x,FP2,EP2,P2(,),过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2),当BCPC时,PBC为直角三角形,如图(2)b过P4作P4Hy轴于H,则BOCCHP4,CH,P4H,P4(,4);同理P3(,4);综上所述:点P的坐标为:(1,2)或(,)或(,4)或(,4);(3)如图(3),连接AP,OBOA,BEEP,OEAP,当AP最大时,OE的值最大,当P在AC的延长线上时,AP的值最大,最大值5,OE的最大值为故答案为:10(2017江苏盐城,27,14分)如图,在平面直角

31、坐标系中,直线yx2与x轴交于点A,与y轴交于点C,抛物线yx2bxc经过A、C两点,与x轴的另一交点为点B(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点;连接BC、CD,设直线BD交线段AC于点E,CDE的面积为S1,BCE的面积为S2,求的最大值;过点D作DFAC,垂足为点F,连接CD,是否存在点D,使得CDF中的某个角恰好等于BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由【分析】(1)根据题意得到A(4,0),C(0,2)代入yx2bxc,于是得到结论;(2)如图,令y0,解方程得到x14,x21,求得B(1,0),过D作DMx轴于M,过B作BNx轴交于A

32、C于N,根据相似三角形的性质即可得到结论;根据勾股定理的逆定理得到ABC是以ACB为直角的直角三角形,取AB的中点P,求得P(,0),得到PAPCPB,过作x轴的平行线交y轴于R,交AC的延线于G,情况一:如图,DCF2BACDGCCDG,情况二,FDC2BAC,解直角三角形即可得到结论【解析】解:(1)根据题意得A(4,0),C(0,2),抛物线yx2bxc经过A、C两点,yx2x2;(2)如图,令y0,x2x20,x14,x21,B(1,0),过D作DMx轴于M,过B作BNx轴交于AC于N,DMBN,DMEBNE,设D(a,a2a2),M(a,a2),B(1.0),N(1,),-(a2)2

33、;当a2时,的最大值是;A(4,0),B(1,0),C(0,2),AC2,BC,AB5,AC2BC2AB2,ABC是以ACB为直角的直角三角形,取AB的中点P,P(,0),PAPCPB,CPO2BAC,tanCPOtan(2BAC),过D作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图,DCF2BACDGCCDG,CDGBAC,tanCDGtanBAC,即令D(a,a2a2),DRa,RCa2a,a10(舍去),a22,xD2,情况二,FDC2BAC,tanFDC,设FC4k,DF3k,DC5k,tanDGC,FG6k,CG2k,DG3k,RCk,RGk,DR3kkk,a10(舍去)

34、,a2,点D的横坐标为2或11(2017江苏扬州,28,12分)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以 PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O(1)若AP=1,则AE=;(2)求证:点O一定在APE的外接圆上;当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值【分析】(1)由正方形的性质得出A=B=EPG=90°,PFEG,AB=BC=4,OEP=45°,由角的互

35、余关系证出AEP=PBC,得出APEBCP,得出对应边成比例即可求出AE的长;(2)A、P、O、E四点共圆,即可得出结论;连接OA、AC,由光杆司令求出AC=4,由圆周角定理得出OAP=OEP=45°,周长点O在AC上,当P运动到点B时,O为AC的中点,即可得出答案;(3)设APE的外接圆的圆心为M,作MNAB于N,由三角形中位线定理得出MN=AE,设AP=x,则BP=4x,由相似三角形的对应边成比例求出AE=xx 2= (x2)2+1,由二次函数的最大值求出AE的最大值为1,得出MN的最大值=即可【解析】(1)解:四边形ABCD、四边形PEFG是正方形,A=B=EPG=90

36、6;,PFEG,AB=BC=4,OEP=45°,AEP+APE=90°,BPC+APE=90°,AEP=PBC,APEBCP,即,解得:AE=;故答案为:;(2)证明:PFEG,EOF=90°,EOF+A=180°,A、P、O、E四点共圆,点O一定在APE的外接圆上;解:连接OA、AC,如图1所示:四边形ABCD是正方形,B=90°,BAC=45°,AC=4,A、P、O、E四点共圆,OAP=OEP=45°,点O在AC上,当P运动到点B时,O为AC的中点,OA=AC=2,即点O经过的路径长为2;(3)解:设APE的外

37、接圆的圆心为M,作MNAB于N,如图2所示:则MNAE,ME=MP,AN=PN,MN=AE,设AP= x,则BP=4x,由(1)得:APEBCP,即,解得:AE= xx 2= (x2)2+1,x=2时,AE的最大值为1,此时MN的值最大=×1=,即APE的圆心到AB边的距离的最大值为12(2017江苏镇江,28,11分)【回顾】如图1,ABC中,B=30°,AB=3,BC=4,则ABC的面积等于3【探究】图2是同学们熟悉的一副三角尺,一个含有30°的角,较短的直角边长为a;另一个含有45°的角,直角边长为b,小明用两副这样的三角尺拼成一个平行四边形ABCD(如图3),用了两种不同的方法计算它的面积,从而推出sin75&

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论