2-3知能提升演练_第1页
2-3知能提升演练_第2页
2-3知能提升演练_第3页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第三节直线的参数方程、选择题(t为参数),则直线的斜率为223A.3B. 3C.21 若直线的参数方程为/_1+2t,尸 2 - 3t解析k= 口3tx 132.x= 2 +1,2.直线?7= 1 t(t为参数)被圆(x 3) + (y+ 1) = 25所截得的弦长为().A. 7迈1B. 40;4Ca/82D.p93+ 4逅答案 D解析厂2 +t,x=- 2+ 2tX-把直线尸2 +1,代入(x 3)2+ (y+ 1)2= 25, y= 1 t得(5 +1)2 + (2 1)2 = 25, t2 7t + 2 = 0.|t112= '(t1 +12)2 4t1t2=41,弦长为 ,2

2、|t1 12|= ,82.答案 C1(t为参数)和圆x2 + y2= 16交于A, B两点,则AB的中x= 1+2t,3.直线y= 3 3+寸点坐标为A. (3, 3)C. ( .3, 3)B. ( 3, 3)D . (3, , 3)第1页解析 1 + 2t + - 3_3+¥t = 16,2tl + t2得 t 8t+ 12 = 0, ti +12 = 8, 2 4, 1x= 1+ 2X 4x= 3中点为 <帀? $.y=-3羽+爭 X 4 尸3答案 Dx = 2 +1,4过点(0, 2)且与直线1+羽”为参数)互相垂直的直线方程为()x=/3tA.ty_ 2+1x_ 羽tB

3、>,y_ 2+1x_ x_ 2J3tC/D.i7_2ty_tx_2 +1,解析 直线S厂化为普通方程为y_3x+ 1 23,其斜率k1_3,ly_ 1 + V3tI3|x_ t,设所求直线的斜率为k,由kk1_ 1,得k_ 譽,故参数方程为i3尸 2 +1(t为参数).答案 B二、填空题x_ 1 + 3t,5. 已知直线11 :(t为参数)与直线12: 2x 4y_5相交于点B,又点7_ 2 4tA(1, 2),则 AB|_.x_1 + 3t,1(5、解析 将代入2x 4y_5,得t_2则B 2, 0 ,而A(1 , 2),得y_ 24t2厶5|AB|_ .5答案5r1x= 2-2t,6

4、. 直线i (t为参数)被圆x2 + y2= 4截得的弦长为.y= - 1+ qt解析 直线为x+ y-1= 0,圆心到直线的距离d =2 = ¥,弦长d=答案 ,14327. 经过点P(1, 0),斜率为4的直线和抛物线y2= x交于A、B两点,若线段AB 中点为M,贝U M的坐标为.4x=1+5t,解析 直线的参数方程为3(t是参数),代入抛物线方程得'y=ft29t - 20t - 25= 0.1 20 10中点M的相应参数为t= 2X 20= 6 点M的坐标是17,3 .答案¥,28.设直线的参数方程为x=-4 +歩,(t为参数),点P在直线上,且与点M0(

5、-4,0)的距离为.2,若该直线的参数方程改写成x= 4 +1,“(t为参数),则在这个方程中点P对应的t值为.y= t解析 由|PM°|= .2知,t= 土. 2,代入第一个参数方程,得点P的坐标分别为(-3, 1)或(5,- 1),再把点P的坐标代入第二个参数方程可得t= 1或t答案 ±、解答题x= 3cos 0 ,9 已知椭圆的参数方程尸2sin 0( 0为参数),求椭圆上一点P到直线x= 2 3t(t为参数)的最短距离.y= 2+ 2t'6 ,2sin 0+4 10解 由题意,得 P(3cos 0 , 2sin 0 ),直线:2x+ 3y 10= 0.|6c

6、os 0 + 6sin 0 10|d =而 6>/2sin 0 +n10 6 2 10, 6 2 10.10.已知直线的参数方程为x= 1 + 3t, y= 2 4t(t为参数),它与曲线(y 2)2 x2= 1交于A、B两点.(1)求AB|的长;求点P( 1, 2)到线段AB中点C的距离.解(1)把直线的参数方程对应的坐标代入曲线方程并化简得7t2 + 6t 2 = 0.设A、B对应的参数分别为t1、t2,nt 6 2贝U t1 + t2= 7, t1t2= 7.所以,线段AB|的长为32+( 4) 2|t112|= 5 (t1 + t2)24t1t2 = 7 23.t1 + t23根据中点坐标的性质可得 AB中点C对应的参数为= y.所以,由t的几何意义可得点P( 1, 2)到线段AB中点C的距离为32+( - 4)15n11.(直线参数方程意义的考查)已知直线I经过点P(1 , 1),倾斜角 十3.(1)写出直线I的参数方程;x= 2cos 0 ,设I与圆C: ' c ( 0为参数)相交于点A、B,求点P到A、B两y= 2sin 0点的距离之积.nx= 1 + tcos ,解(1)直线I的参数方程为ny= 1 + tsin ,(2)圆 C:x=2cos 0 ,y=2s

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论